
Evaluating Garbage Collection Performance Across
Managed Language Runtimes

Yicheng Wang∗†, Wensheng Dou∗†‡§, Yu Liang∗†, Yi Wang∗†, Wei Wang∗†‡§, Jun Wei∗†‡§, Tao Huang∗†
∗Key Lab of System Software, State Key Laboratory of Computer Science, Institute of Software Chinese Academy of Sciences

†University of Chinese Academy of Sciences, Beijing
§Nanjing Institute of Software Technology, ‡University of Chinese Academy of Sciences, Nanjing

{wangyicheng19, wsdou, liangyu22, wangyi22, wangwei, wj, tao}@otcaix.iscas.ac.cn

Abstract—Modern managed language runtimes (e.g., Java, Go
and C#) rely on garbage collection (GC) mechanisms to automat-
ically allocate and reclaim in-memory objects. The efficiency of
GC implementations can greatly impact the overall performance
of runtime-based applications. To improve GC performance,
the academic and industrial communities have proposed several
approaches to evaluate the GC implementations in an individual
runtime. However, these approaches target a specific managed
language (e.g., Java), and cannot be used to compare the GC
implementations in different runtimes.

In this paper, we propose GEAR, an automated approach
to construct consistent GC workloads for different managed
language runtimes, which can further be used to evaluate GC
implementations across different runtimes. Specifically, we design
a group of runtime-agnostic Memory Operation Primitives (MOP),
which can portray the memory usage information that influences
GC. GEAR can further automatically convert a MOP program into
runtime-specific programs for the target runtimes, which serve
as a consistent GC workload for different runtimes. To build
MOP programs with real-world GC workloads, we instrument
the commonly-used runtime Java Virtual Machine (JVM) to
collect the memory operation trace during a Java application’s
execution, and then transform the memory operation trace into
a MOP program. The experimental result on three widely-used
runtimes (i.e., Java, Go and C#) shows that GEAR can generate
consistent GC workloads for different runtimes. We further con-
duct a comprehensive study on these three runtimes, and reveal
some interesting findings about their GC performance, providing
useful guidance for improving their GC implementations.

Index Terms—Garbage collection, managed language runtime,
performance evaluation

I. INTRODUCTION

Developers are increasingly turning to managed languages
(e.g., Java, Go, C#, JavaScript and Python) due to their
security and flexibility [1], [2]. Managed language runtimes
usually adopt automatic memory management mechanisms,
i.e., garbage collection (GC), to automatically allocate and
reclaim in-memory objects. GC can greatly simplify coding,
reduce memory-related errors and improve code reusability for
developers [3], thus improving development efficiency.

Despite the advantages of GC, GC imposes non-negligible
performance overhead on application execution [4]–[6]. GC
activities (e.g., GC pauses) can potentially affect the overall
throughput and latency of applications [7]–[10]. To reduce
GC’s performance overhead on applications, existing managed

Wensheng Dou is the corresponding author.

language runtimes have designed and implemented various GC
mechanisms [11], [12]. For example, Java runtime HotSpot
implements mostly-concurrent ZGC [13] to reduce GC pauses,
and C# runtime CLR implements generational server GC [14]
to improve application throughput.

To better analyze and optimize GC performance, the aca-
demic and industrial communities have proposed some ap-
proaches and benchmarks to evaluate GC implementations
in individual managed language runtimes [15]–[19]. For ex-
ample, the Dacapo benchmark [15] develops multiple Java
applications with typical memory usage patterns, and has been
widely used in evaluating the different GC implementations in
Java runtimes [20]–[23].

Different managed language runtimes usually have different
GC implementations. Thus, it is appealing to understand which
GC implementation in different runtimes can achieve better
performance [24]–[29]. By comparing the GC implemen-
tations in different runtimes, we can identify performance
shortcomings in specific GC implementations, and provide
useful guidance for GC optimization. For a fair comparison,
reimplementing a GC mechanism in another runtime [30] is
a possible solution, but would take huge development effort.
We still lack an effective approach to scientifically evaluate
GC implementations in different runtimes.

Recently, researchers have proposed some approaches to
compare the overall performance [31]–[35], energy effi-
ciency [36]–[38], and compiler performance [39]–[41] in dif-
ferent runtimes. They usually leverage the applications written
in different languages with the same functions to perform
the comparison. However, these applications with the same
functions can still have varying memory usage in different
runtimes. For example, the commonly-used library Hashmap
has different memory usage in Java and Go due to different
implementations. As a result, these approaches cannot ensure
that the GC workload of evaluation applications remains con-
sistent across different runtimes. To make things worse, these
approaches [31], [42] build their experimental applications in
different languages from scratch, which requires significant
development effort and cannot be easily extended to other
managed languages and applications.

To scientifically compare GC implementations across dif-
ferent runtimes, we introduce GC Evaluation Across Runtimes
(GEAR) in this paper. GEAR is designed to create consistent GC

workloads for different runtimes, which create objects with the
same structure and reference relationships, and change object
reference relationships in the same execution order in different
runtimes. There are two main challenges in achieving this
goal: (1) How to create programs that share a consistent GC
workload for different runtimes? (2) How to efficiently create
these programs to exhibit real-world GC workloads?

To address the first challenge, we first design a group of
runtime-agnostic Memory Operation Primitives (MOP). MOP
can portray the memory usage information that influences GC,
including object structure, object creation, object reference
update, and method call. We then establish the conversion
relations between MOP and the target managed languages, and
automatically convert a MOP program into runtime-specific
programs for the target runtimes.

For the second challenge, we first instrument the commonly-
used runtime Java Virtual Machine (JVM) to collect the
memory operation trace during a Java application’s execution.
This trace includes class information, time-ordered object
operation, along with the method and thread signature at which
the trace is generated. We then automatically transform and
simplify a memory operation trace into a MOP program, which
preserves the same object operations and method call stacks
as the original Java application.

To validate the effectiveness of GEAR, we select three
popular managed language runtimes for our evaluation, i.e.,
Java, GO and C#. We manually craft three MOP programs
and automatically build 20 MOP programs from real-world
Java applications sampled in GitHub, Guava Benchmark [43]
and Rosetta Code [44], and convert them into runtime-specific
programs for the target managed language runtimes. For the
three manually crafted MOP programs, the memory profil-
ing results show that the objects created by our generated
programs in different runtimes have consistent counts, size
and reference relationships, with a maximum difference of
5.0%. This consistency demonstrates GEAR’s capability to
construct consistent GC workloads across different runtimes.
Additionally, we compare the object statistics of the generated
programs with their original Java applications for the 20 real-
world applications. The experimental result shows a maximum
difference of 4.8%, further demonstrating GEAR’s capability to
build real-world GC workloads.

We further perform an empirical study on the performance
of the three representative GC implementations in these run-
times, i.e., Java ZGC [13], Go GC and C# server GC. These
implementations are selected based on their popularity and
diversity. We design 16 typical GC workloads for these GC
implementations, including 3 typical software systems simu-
lating different memory usage patterns (web server, database
and big data framework), 4 basic data structures (stack, queue,
tree and array), and 9 real-world GC workloads, which are
generated by GEAR based on the applications sampled from
Github and Guava Benchmark [43]. We collect GC metrics,
execution metrics, and resource usage metrics through logging
and profiling, and perform variable control analysis on data
sizes, heap sizes, and program parallelism.

Roots
Reference�1

�3

�2

�6

�1
�2

...

�3
�7

�4

�8

�5

�9

�6
 �1 ���

 �2 ���

 �3 ����

Heap Memory

...

Fig. 1. The typical object model in a managed language runtime.

TABLE I
THE MAIN DESIGN CHOICES IN OUR STUDIED GCS

GC Compact Generational Concurrency
Java ZGC Moving no Mostly

Go GC Non-Moving implicit Partially
C# GC Moving yes None

During this study, we reveal several interesting findings,
some of which cannot be inferred or induced by the design
choices of corresponding GC implementations. We summarize
some main findings as follows. (1) Java ZGC and Go GC
perform significantly worse under the single-linked list struc-
ture compared with that under the array structure, while C#
GC is less affected by different object reference relationships.
This indicates that Java ZGC and Go GC have performance
issues when dealing with the single-linked list structure. (2) Go
GC performs relatively worse under programs with adequate
memory budget, since its heuristic heap adjustment is too strict
on memory usage. This indicates that Go GC should optimize
its heap adjustment strategy. (3) Go GC scales better when
increasing application parallelism compared to Java ZGC and
C# GC. In design, Java ZGC and C# GC should have similar
scalability as Go GC. However, our experiment shows that
Java ZGC even suffers slowdowns when parallelism doubles
in some cases. This indicates scalability issues in Java ZGC.
These findings can provide valuable insights for GC and
runtime developers to improve their GC implementations.

In summary, we make the following contributions.

• We propose a group of runtime-agnostic Memory Op-
eration Primitives (MOP) that can portray the memory
operations related to GC, and are used to create consistent
GC workloads for different runtimes.

• We propose an approach to instrument the JVM to collect
the memory operation trace during Java application ex-
ecution, and automatically transform memory operation
traces into MOP programs.

• We evaluate GEAR on manually written and automatically
generated MOP programs, and the experimental result
shows that GEAR can generate consistent GC workloads
for different runtimes .

• We conduct an empirical study on 3 widely-used GC im-
plementations by executing 16 consistent GC workloads,
and reveal several interesting findings.

MOP

Object Operation
Trace

......
①MOP

Trace

to MOP

④ MOP

to Program

②Trace

Collection

③ Consistent

GC Workload

JAVA

C#

Go

Real-world
Applications

Instrumented
Java Runtime

Object Class
Information

Fig. 2. GEAR overview.

II. BACKGROUND

In the managed language runtimes, heap memory is a region
where dynamic memory allocation of objects takes place.
Objects allocated on the heap memory do not have fixed
lifetimes and are managed by GC mechanisms.

A. Typical Object Model

Objects are essential components in managed language run-
times. They are instances of classes, with their size determined
by the number, type and order1 of fields defined by their
classes. As shown in Fig. 1, an object field can store a primitive
type value or a reference to another object. A reference is a
pointer that enables one object to access another, forming a
reference graph of interconnected objects in the heap. GC roots
are references to objects that must live, including static fields
and local variables in active methods [46].

B. Typical GC Workflow

Managed language runtimes leverage GC mechanisms to
reclaim memory occupied by dead objects. Modern GC al-
gorithms like mark-sweep and mark-compact reclaim dead
objects in periodic GC cycles.2 A typical GC cycle is usually
triggered when the heap usage reaches a certain threshold.
During a GC cycle, the GC mechanism typically marks live
objects through reachability analysis, which starts from GC
roots, and traverses the object reference graph through the
chain of references. The objects identified during reachability
analysis are marked live (e.g., o1, o2, o3, o6 and o7 in Fig. 1),
while others are considered dead (e.g., o4, o5, o8 and o9 in
Fig. 1). The memory occupied by these dead objects can be
reclaimed by the GC mechanism.

C. Design Choices in GC Implementations

Different managed language runtimes have different GC
implementations, because they have different design choices
and implement GC algorithms in different ways. Table I shows
the main design choices adopted in our studied three GCs.

• Memory Compact. Non-moving GC like Go GC [11]
will not relocate live objects after reclaiming dead ob-
jects, while moving GC will relocate live objects to
compact memory and reduce memory fragmentation.

1The order of fields in an object can affect memory alignment [45].
2Reference counting GC algorithm may reclaim an object when its refer-

ence count reaches zero.

• Generational Memory. Generational GC like C# server
GC [14] divides the heap memory into generations,
and frequently performs minor GC to collect short-lived
objects in the young generation at a small cost. Non-
generational GC like Java ZGC [13] targets at objects in
the whole heap in all GC cycles. Go GC manages young
objects and old objects differently but in the same region.

• GC Concurrency. Non-Concurrent GC like C# server
GC performs all its work in the stop-the-world pauses.
Partially-Concurrent GC like Go GC performs some of
their work concurrently with the application’s execution.
Mostly-Concurrent GC like Java ZGC leverages load
barrier to minimize the pauses and performs most GC
work concurrently with the application.

Besides the aforementioned design choices, there exist more
differences between GC implementations in different managed
runtimes, such as heap layout and object pointers. These
mechanisms ultimately lead to differences in GC performance.

III. GC EVALUATION ACROSS RUNTIMES

In this paper, we propose GC Evaluation Across Runtimes
(GEAR) to create consistent GC workloads for different man-
aged language runtimes. Fig. 2 shows the overview of GEAR.
We first design a group of runtime-agnostic Memory Operation
Primitives to portray the memory usages that influence GC (1
MOP). We then convert a MOP program into runtime-specific
programs for the target runtimes, which serve as a consistent
GC workload for different runtimes (2 MOP to Program).
To build MOP programs with real-world GC workloads, we
instrument the Java Runtime to collect the memory operation
trace during a Java application’s execution (3 Trace Collec-
tion). Then, we transform the memory operation trace into a
MOP program that preserves the GC workload of the original
Java application (4 Trace to MOP). The generated programs
can serve as a consistent GC workload for different runtimes.

A. Memory Operation Primitives

We design Memory Operation Primitives (MOP) to portray
the memory usage information that influences GC, which can
serve as the foundation for the generation of runtime-specific
programs. To achieve this goal, we follow two principles in the
design of MOP. (1) MOP only contains memory operations that
can influence GC workloads, computational operations (e.g.,
basic arithmetic and comparison operations) are not involved,

PrimitiveType :=bool | char | byte | int | float | double

ClassDefinition :=class ClassType extends ClassType{FieldDefinition ∗ }
FieldDefinition :=static Type FieldName | Type FieldName

Type ::=PrimitiveType | ClassType

ObjectCreation :=NewInstance(ClassType)

| NewArray(ClassType, IntLiteral, IntLiteral)

LeftExpression :=Identifier | Identifier.FieldName | ClassType.FieldName

| Identifier[IntLiteral]

RightExpression :=ObjectCreation | MethodCall | LeftExpression

| null
Assignment :=LeftExpression = RightExpression

Statement :=Assignment | MethodCall | Loop

| ThreadCreation

MethodDefinition :=ReturnType MethodName(Parameter ∗)

{Statement ∗ }
ReturnType :=ClassType | void

MethodCall :=MethodName(ArgumentList)

Loop :=Loop(Identifier, IntLiteral, IntLiteral, IntLiteral)

{Statement ∗ }
ThreadCreation :=spawn MethodCall

Fig. 3. The syntax of MOP.

since these operations cannot impact the GC performance in
different runtimes. (2) The statements in MOP are runtime-
agnostic. MOP does not use standard classes (e.g., String and
Hashmap) or operations (e.g., ArrayCopy) in a specific runtime
(e.g., Java), since they have different memory behaviors under
different runtimes. For example, a String instance in Java has 2
fields and occupies 24 bytes, whereas a String in C# has 1 field
only and occupies 16 bytes. Instead, MOP only uses primitive
types and basic object operations, which can be used to build
complex classes and operations that have consistent memory
behaviors in different runtimes.

Based on the analysis of the workflows in popular GC im-
plementations, we identify that GC workloads are influenced
by object number, size and object reference relationships.
Consequently, in the design of MOP, we utilize the memory
usage information that influences these factors, including (1)
Object Structure statements to depict the object size, (2) Object
Creation statements to depict the object number and (3) Object
Reference Update statements to depict the object reference
relationships. Fig. 3 shows the syntax of MOP.

1) Object Structure: The memory size of an object depends
on its structure, which influences the GC copy workload of the
object. MOP uses ClassDefinition to depict the object structure,
including the types, numbers, and orders of fields, all of
which affect the object memory layout. MOP supports fields
of primitive types and custom types, defined as either instance
fields or static fields. To accommodate common managed
languages, MOP also retains the class inheritance mechanism,
allowing subclasses to inherit fields from superclasses.

2) Object Creation: The number of created objects con-
tributes to the total consumption of heap memory, affecting the
trigger of a GC cycle. MOP uses the ObjectCreation statement
to describe the creation of objects that will be allocated in

TABLE II
ILLUSTRATIVE CONVERSIONS FROM MOP TO JAVA, GO AND C#.

MOP Java Go C#
byte, int, long byte, int, long int8, int32, int64 byte, int, long
class CName class CName type CName struct class CName

NewInstance() new CName() &CName{} new CName()
NewArray() new Type[] make([]Type, l) new Type[]

Loop(){} for() {} for() {} for() {}
ret name() {} ret name(){} func name() ret{} ret name(){}
spawn func() Thread(()->f()) go func() Thread(()=>f())

heap memory. The ObjectCreation statement supports normal
object creation and array object creation. The creation of all
objects requires specifying the class, the creation of array
objects additionally requires length and dimension.

3) Object Reference Update: Modern GC mechanisms
mark objects along the object references, and the object
reference relationship affects the parallelism and sequence
of GC processing. MOP uses the Assignment to change the
reference relationship between objects. The changed reference
in the LeftExpression of a Assignment can be a field of an
instance, a static field of a class or a member of an array.
The RightExpression can be the same types allowed in the
LeftExpression, as well as a new object, a method return value
or a null value.

4) Code Structure: MOP introduces MethodDefinition and
Loop statements to reduce code size and increase the ex-
pression ability. MethodDefinition in MOP allows parameters,
a return value and a block of other statements. The Loop
statement in MOP requires an iteration index with its start
value, end value and step size, which indicates the statements
in its block will be executed multiple times. Additionally, MOP
introduces ThreadCreation to build multithreaded memory
operations, which indicates the spawn of a new thread to
execute a specific method.

B. MOP Programs to Runtime-Specific Programs

To create runtime-specific programs for the target managed
language runtimes from a MOP program, we first establish
the conversion relations between MOP and the target managed
languages. Table II shows the conversion examples of Java,
Go and C#. GEAR can also be extended to other managed
languages that use a similar object model. Based on these
conversion relations, it is straightforward to automatically
convert a MOP program into a runtime-specific program for
a target runtime. In the following, we use Class Structure and
Method Conversion for illustration.

1) Class Structure Conversion: We first convert the class
name and inheritance relationship using the syntaxes of target
languages, and use a basic class with no fields as the default
superclass of all defined classes (like Object Class in Java).
We then convert the names and types of all fields in the class
definitions, with primitive types converted to types in target
languages that have the same size (e.g., long to int64 in Go),
and reference types converted to object or pointer.

Real-world
Applications

Object operation Trace

1 public class manager {
2 Object field；
3 public static void main() {
4 manager test = new manager();
5 test.field = null;
6 test.fruit();
7 }
8 public void fruit(){
9 List<String> list = new ArrayList<>();
10 list.add(0,"Orange");
11 list.add(1,"Banana");
12 list.add(2,"Cherry");
13 }
14 }

1 Add Root ID:0x01, Set:VMGlobal, C:Class
2 Add Root ID:0x80, Set:ClassLoader, C:[Object
3 New ID:0x03, C:String, T:Monitor
4 Add LR H:0x03, C:String, T:Monitor
5 ...
6 Add PR ID:0x04, C:[String, T:main, M:manager.main ([String)V
7 New ID:0x56, C:manager, T:main, M:manager.main ([String;)V
8 Add PR ID:0x56, C:manager, T:main, M:manager.<init> ()V
9 Return ID:NULL, C:NULL, T:main, M:manager.<init> ()V
10 Add LR ID:0x56, C:manager, T:main, M:manager.main ([String;)V
11 Put ID:0x56, C1:manager, ID2:null, C2:null, f:field, T:main,
 M:manager.main ([String;)V
12 Add PR ID:0x56, C:manager, T:main, M:manager.fruit ()V
13 New ID:0x57, C:ArrayList, T:main, M:manager.fruit ()V
14 New ID:0x58, C:String, T:main, M:manager.fruit ()V
15 PutA ID1:0x80, C1:[Object;, ID2:0x68, C2:String, O:0, T:main,
 M:manager.fruit ()V
16 Add PR ID:0x57, C:ArrayList, T:main, M:ArrayList.add ()V
17 Add PR ID:0x58, C:String, T:Main, M:ArrayList.add ()V
18 Return H:NULL, C:NULL, T:main, M:ArrayList.add (I,Object;)V
19 ...
20 Return ID:NULL, C:NULL, T:main, M:manager.fruit ()V
21 Return ID:NULL, C:NULL, T:main, M:manager.main ([String;)V
22 ...
23 Add PR ID:0x78, C:Thread, M:Thread.exit ()V
24 Add PR ID:NULL, C:NULL, M:Thread.current ()Thread;

① Collect Trace

New Object

Call Method

Method Return

VM Initial

VM Exit

Update Reference

Initial MOP Program

1 void manager_main_v0(String[] string_array_0) {
2 manager manager_0 = NewInstance(manager);
3 manager_0.field = null;
4 manager_init_v0(manager_0);
5 manager_fruit_v0(manager_0);
6 }
7
8 void manager_fruit__v0(manager manager_0) {
9 ArrayList arraylist_0 = NewInstance(ArrayList);
10 ArrayList_init_v0(arraylist_0);
11 String string_0 = NewInstance(String);
12 root[0] = string_0;
13 ArrayList_add_v0(arraylist_0, 0, string_0);
14 String string_1 = NewInstance(String);
15 root[1] = string_1;
16 ArrayList_add_v1(arraylist_0, 1, string_1);
17 String string_2 = NewInstance(String);
18 root[2] = string_2;
19 ArrayList_add_v2(arraylist_0, 2, string_2);
20 }

④ Simplify

1 void manager_main_v0(String[] string_array_1) {
2 manager manager_0 = NewInstance(manager);
3 manager_init_v0(manager_0);
4 manager_fruit_v0(manager_0);
5 }
6
7 void manager_fruit__v0(manager manager_0) {
8 ArrayList arraylist_0 = NewInstance(ArrayList);
9 ArrayList_init_v0(arraylist_0);
10 Loop(i, 0, 2, 1){
11 String string_0 = NewInstance(String);
12 root[i] = string_0;
13 ArrayList_add_v0(arraylist_0, i, string_0);
14 }
15 }

Simplified MOP Program

Build Loop

Merge Method

② Filter

③ Transform

(a)

(b)

(c)

(d)

Fig. 4. An illustrate example for collecting memory operation trace and transforming memory operation traces into MOP programs.

2) Method Conversion: We first convert the name, return
value, and parameters of the method according to the method
declaration syntaxes in target languages. Then, for the method
body, we split the code blocks and statements, and parse each
statement using pattern matching. For each statement part, we
perform the conversion according to the established conversion
relations, and obtain the final method body by joining the
converted statements and code blocks. For the thread spawn
in MOP, we leverage the respective thread creation approaches
in the target languages to execute the methods, and use their
join approaches to synchronize the created threads.

C. Memory Operation Trace Collection

To build MOP programs that reflect real-world GC work-
loads, we first instrument the source code of a managed lan-
guage runtime. This approach enables us to collect the memory
operations of a real-world application during its execution,
without changing its original code or memory behavior. In the-
ory, we could instrument any managed language. We choose
the Java runtime because it is the commonly used runtime
with abundant applications. Specifically, we instrument the
Java Virtual Machine (JVM) to collect the class information
of created objects and sequential traces of all basic memory
operations during a Java application’s execution.

1) Class Information Collection: We collect the class infor-
mation of created objects during the loading and initialization
of the class. The collected information includes the types and
names of classes as well as their fields. As each class is loaded
only once when it is first used during execution, the traced
class information is non-repetitive and non-redundant.

2) Memory Operation Collection: We collect the object
creation trace when allocating heap memory for a new object.
The ID and class of the new object are recorded (e.g., Line
7 in Fig. 4(b)). We also collect the trace of reference updates
and references load when accessing an object field or a
member of an array. Two linked objects and corresponding
filed information are recorded (e.g., Line 11 in Fig. 4(b)).
For method call information, we record the parameters input,
changes to local variables, and the return value (e.g., Line 12-
18 in Fig. 4(b)). For each trace, we also record the signature

of the current method and thread during collection, which
facilitates the transformation of method definition and thread
creation later. In addition, we record the GC roots of class
metadata and VM global variables in the JVM (e.g., Line
1-2 in Fig. 4(b)), which help construct the complete object
reference graph later. We illustrate how we instrument the
runtime to obtain this information in Section IV-A.

D. Memory Operation Traces to MOP Programs

To build a MOP program from a memory operation trace
collected by the instrumented JVM, we first filter the traces
to exclude application-unrelated logic. Then, we perform an
initial transformation from the trace to MOP operation by
operation. After that, we simplify the MOP program by merging
duplicate method definitions and rebuilding loop structures.

1) Trace Filtering: We filter out the operations of ap-
plication logic and exclude VM-related operations. As the
example shown in Fig. 4, we first classify the traces based on
thread tags and discard the operations of VM-related threads
(e.g., Monitor thread). Then, from the operations of the main
thread, we extract the operations between the call and return
of the Main function to isolate the operations generated by
application logic, and discard all operations collected during
VM exit, which occurs after the Main function return. For
the operations during VM initialization, we find that directly
discarding them may lead to the omission of some root object
operations. Consequently, we retain the operations of objects
whose IDs appear in the Main function operations (e.g., Line 2
in Fig. 4(b)). We treat them as static variables and use a static
block to perform their operations before the Main function.

2) Initial Transformation: During the initial transformation,
we transform the class information into the class definitions
in MOP, build the method definitions, and transform the
object operation trace to MOP statements in the method body.
The transformation of class information is straightforward.
We iterate over all classes and their fields, and include
them in the class definition. Then, starting from the Main
function, we sequentially transform the memory operations
to the corresponding MOP statements, and construct a new
method when encountering a method call operation. During

Algorithm 1: MOP Program Simplification

1 Function Merge(methodCallTree) do
2 methods← getLeafMethods(methodCallTree)
3 if methods = ∅ then
4 return
5 foreach m ∈ methods do
6 h← Hash(m)
7 if h ∈ hashTable then
8 merge m with hashTable[h]

9 else
10 hashTable[h]← m

11 foreach n ∈ methodCallTree do
12 replaceCallsWithHash (n, hashTable)

13 Merge (methodCallTree)

14 Function BuildLoop(m, wLen) do
15 start← 1
16 while start + 2 · wLen ≤ mLen do
17 prevHash← Hash(m, start, wLen)
18 curHash← Hash(m, start + wLen,wLen)
19 if prevHash = curHash then
20 loop← createLoop(m, start, wLen)
21 cur ← start + wLen
22 while cur + wLen ≤ mLen do
23 nextHash← Hash(m, cur + wLen,wLen)
24 if curHash = nextHash then
25 addToLoop (loop, cur + wLen, wLen)
26 cur ← cur + wLen

27 else
28 break

29 start← cur

30 else
31 start← start + 1

the transformation of each method, a table of variables and
object IDs is maintained, which helps us determine the source
of objects processed within the method. Fig. 4(c) shows an
example of the initial transformation.

3) MOP Program Simplification: The initial MOP program
can be extremely large, since the repeated definitions of the
same method and the unrolling of loops in original applica-
tions. To reduce code size, we first merge method definitions
with the same process flow (e.g., ArrayList add method in
Fig. 4(c)). Algorithm 1 shows the merging algorithm. Starting
from the methods at the leaf nodes of the method call tree,
we encode each method by hashing its signature (name,
parameters, return type), statements, and the hash values of
the methods it calls. For methods sharing the same hash value,
they are determined to have the same definition and workflow,
and we merge them into the same method definition.

To construct loop structures in MOP (i.e., Loop (index, start,
end, step){Loop body}), we identify and merge consecutive
code segments that exhibit identical statements. As shown in
Algorithm 1, for a method of considerable length, we employ
a sliding window to detect repeated code segments in it.
Each window, defined by a specified length, is encoded by
hashing the statements that it contains. If the hashed value
remains unchanged as the window slides, the code segments
are identified as repeated operations. Then we merge these
repeated code segments into a single loop body, and extract
the values for the loop conditions based on the number of
repetitions and the changing pattern of the index. Our approach
can reconstruct loops in the original applications with regular
index changes and consistent execution paths. However, loops
with complex conditions cannot be reconstructed.

IV. IMPLEMENTATION

A. JVM Instrumentation

We instrument the most commonly-used Java runtime,
the HotSpot VM in OpenJDK 17, to collect the memory
operation trace during a Java application’s execution. We
focus on instrumenting the processing of specific bytecodes
and keywords in the interpreter of JVM. To ensure that no
operations are omitted due to the hierarchical compilation of
the JVM, we use the compile command -Xint to disable the
JIT compiler. For bytecodes that are processed in the template
table with assembly instructions, we save all registers and call
the collection functions to record the related information. We
modify approximately 1000 lines of code in HotSpot.

1) Class Information: We collect the information of loaded
classes when the VM parses the class file for metadata. We
traverse all the fields and output their names and types.

2) Object Creation: We collect the object creation informa-
tion by intercepting the handling of the bytecode new, which is
the entry point for most allocation of normal objects and array
objects. We also intercept other JNI methods used for creating
objects, including object cloning and object constructors. In
the instrumentation, we output the hashcode, class name of the
object, and the basic dimension information of array objects.

3) Object Reference: We collect the object reference infor-
mation by intercepting the handling of bytecodes related to
writing/loading fields (e.g., putfield/getfield) and writing/load-
ing array members (e.g., aastore/aaload). We also intercept the
processing logic that implicitly modifies references, including
ArrayCopy, object clone, and related JNI methods. In the
instrumentation, we output the hashcode of objects on both
ends of reference, as well as the offset and name of the field
being written or loaded.

4) Root Object: For root objects related to active methods,
we collect their information by monitoring the stack frame of
the JVM interpreter. Specifically, we iterate through the Local
Variable Table in the frame when a method is called, collect
the information of input parameters. We monitor the bottom of
the frame when the method returns to collect the information
about return value. For VM-related root objects, we collect
their information by monitoring Oop Storage Set. To collect
the information of root objects related to class metadata, we
monitor the Oop Handles of ClassLoader.

5) Thread Information: We collect the information about
the thread that performs the object operation by acquiring the
handler of the current thread. We attach the name of the current
thread to each item in the trace.

B. Special Feature Handling

The conversion from a MOP program to runtime-specific
programs is straightforward for most managed languages.
However, some special language features in Go require addi-
tional handling. First, the Go language does not support static
fields. To address this, we create a helper class for each class
that has static fields, and use a global instance to store its static
values. Second, Go does not support class and inheritance

relationship, GEAR uses interfaces and embedded structs to
construct an equivalent object structure, which does not affect
the object model in the Go runtime. Third, Go enforces
restrictive type conversion, which makes GEAR unable to
handle complex inheritance relationships in Java.

V. EVALUATION

We evaluate GEAR on three widely-used managed language
runtimes (i.e., Java, Go and C#), and answer the following two
research questions.
• RQ1: Can GEAR create programs that share a consistent GC

workload across different managed language runtimes?
• RQ2: Can GEAR create programs for different runtimes that

exhibit real-world GC workloads? And at what cost?

A. Experimental Methodology

1) Environment Setup: We perform our evaluation on a
physical machine with 20-core Intel(R) Xeon(R) Gold 5215
CPU, 128 GB of memory, running the CentOS Linux release
8.0.1905. We select three popular managed languages for our
evaluation, i.e., Java, Go, and C#. The conversion relations
for three target languages take 98, 128, and 104 lines of code,
respectively. It generally takes about one day to add support
for a language. We use the latest stable version of the runtime
for each language, i.e., OpenJDK 17.0.2 HotSpot VM, Go
1.22.3, .NET 8.0.3.

2) Experimental Applications: We first manually craft 3
MOP programs, i.e., WebServer (141 LoC), Database (1012
LoC), and BigData (482 LoC), which simulate representative
memory usage patterns in software systems. We use the core
workflows and classes in the memory management of Apache
Tomcat [47], Apache Cassandra [48] and Apache Flink [49]
to craft WebServer, Database and BigData, respectively.

For real-world GC workload generation, we use 20 Java
applications sampled from three data sources as shown in
Table IV. (1) We first search the keyword GC Benchmark
on GitHub [50]. In the 20 search results written in Java, we
select the top 3 related projects. (2) We sample 6 applications
from Guava Benchmark [43]. These applications involve the
creation and manipulation of complex objects [51], which
can lead to memory overhead and GC behavior. We sample
these applications based on the criteria that they evaluate
the creation of custom data structures, rather than computa-
tional algorithms or primitive types. The applications meeting
the criteria are expected to create more objects and trigger
complex GC behavior. From 13 applications that meet the
criteria, we randomly select 6 applications. (3) We sample 11
Java solutions from Rosetta Code [44]. Rosetta Code offers
programming tasks with corresponding solutions written in
multiple languages. These solutions have been used in related
work to evaluate the performance of different runtimes [32].
Rosetta Code contains 1229 tasks in total, 1173 of which have
Java solutions. We sample these Java solutions based on the
criteria that they use self-defined classes, rather than primitive
types only. Solutions meeting the criteria are expected to create
complex objects and trigger complex GC behavior. From the

TABLE III
MEMORY COMPARISON FOR GENERATED RUNTIME-SPECIFIC PROGRAMS

Application Object Stats Java Go C# Diff %

WebServer Count (Billion) 1172 1135 1195 5.0%
Size (GB) 86705 83483 84762 3.7%

Database Count (Billion) 108.7 108.9 109.2 0.5%
Size (GB) 2252 2269 2355 4.4%

BigData Count (Billion) 148.0 144.3 143.6 2.9%
Size (GB) 2831 2836 2849 0.7%

119 Java solutions that satisfy the criteria, we randomly select
11 solutions.

3) Experimental Process: To validate the GC workload
consistency of runtime-specific programs generated by GEAR,
we focus on the total number, total size, and reference re-
lationships of objects created in each runtime. We utilize
profiling tools and GC logs in the target managed language
runtimes to collect the required information. Specifically,
we use PrintClassHistogram for object statistics in Java,
gotoolpprof for Go, dotnettrace and PerfView [52] tool
for C#. Meanwhile, we use the heap dump tool to obtain
heap snapshots at the common checkpoints and check object
reference relationships using these snapshots.

B. Consistent GC Workload Construction

We convert the 3 manually crafted MOP programs into
runtime-specific programs within a second. All created pro-
grams are executable on the target managed language runtimes
without any manual modification.

We collect and calculate the total number and sizes of
heap objects created under different runtimes using tools intro-
duced in Section V-A3. We find certain memory optimizations
adopted by the runtimes (e.g., compressed pointers, on-stack
replacement) can reduce the number and size of objects created
in the heap. To verify the consistency of GC workloads in all
runtimes, we turn off these optimizations in our evaluation.

The statistical results after disabling memory optimization
are listed in Table III. We can see that for all three applica-
tions, the maximum difference in object numbers and sizes
is less than 5%. The difference arises from the loading and
instantiation of different standard classes, as well as different
logging processes in different runtimes. We further compare
the similarity of the object reference relationships using the
heap snapshots at the common checkpoints. We build the ob-
ject reference graph based on objects and references recorded
in the dump files, and compare the nodes and edges between
the graphs from different runtimes. The results show over
95% similarity of objects among runtimes, aligning well with
MOP programs. These results demonstrate GEAR’s capability
to construct a consistent GC workload in different runtimes.

C. Real-World Workload Generation

We present the metrics for real-world workload generation
in Table IV. It can be observed that the Java applications
tracing (the fourth column in Table IV) takes on average 32×
longer time than the original application execution (the third

TABLE IV
REAL-WORLD GC WORKLOAD GENERATION

Source Application Orig Trace To MOP Gen Diff

Github
jvm-gc4 2.1s 34s / 1.2GB 152s / 629KB 2.7s 1.7%

gcbenchmark5 1.5s 31s / 0.9GB 219s / 3113KB 2.6s 1.6%
gcbench6 3.0s 35s / 1.0GB 242s / 462KB 4.2s 3.7%

Guava

Segment 2.7s 71s / 2.3GB 527s / 2615KB 3.8s 4.6%
Monitor 1.4s 25s / 0.9GB 105s / 909KB 1.7s 1.6%

SetCreation 3.0s 63s / 2.1GB 449s / 5915KB 3.6s 4.0%
Map 2.9s 61s / 2.0GB 512s / 6074KB 3.6s 3.5%

BinaryTree 2.1s 63s / 2.2GB 540s / 543KB 2.6s 3.8%
ImmutableList 2.5s 44s / 1.3GB 223s / 2039KB 3.3s 4.4%

Rosetta

AVL Tree 106ms 24s / 0.8GB 127s / 248KB 153ms 3.1%
Calkin-Wilf 142ms 25s / 0.9GB 105s / 315KB 263ms 4.1%

AST interpreter 177ms 29s / 1.0GB 102s / 340KB 192ms 4.0%
Fast Fourier 155ms 26s / 0.9GB 103s / 257KB 169ms 3.5%

Numeric Error 102ms 21s / 0.9GB 95s / 229KB 123ms 4.8%
Ormiston Triples 296ms 38s / 1.6GB 419s / 7758KB 396ms 4.2%

Bell Numbers 281ms 36s / 1.5GB 315s / 4307KB 351ms 2.5%
Resistor Mesh 114ms 31s / 1.1GB 167s / 975KB 170ms 3.5%

Range 129ms 28s / 1.0GB 119s / 395KB 159ms 3.2%
Tarjan 138ms 25s / 1.0GB 103s / 497KB 147ms 3.1%

Universal Turing 177ms 24s / 0.9GB 121s / 540KB 238ms 3.3%
Average 1.15s 36.7s / 1.3GB 237.3s / 1908KB 1.52s 3.4%

column in Table IV). In the step of transforming memory
traces into MOP programs, GEAR builds each MOP program
from its trace within 10 minutes (the fifth column in Table IV).
We observe that loop construction and method merging reduce
the code size of the initially transformed MOP program by
84%, resulting in each final MOP program size of less than 8
MB. All generated Java and C# programs are executable on
their respective runtimes.

The generated Java programs (the sixth column in Table IV)
take 1.3× execution time on average compared to the original
Java applications. The slowdown is mainly caused by repeated
definitions of methods that have different execution paths, as
well as undiscovered loops in the original Java applications.
These repetitions reduce the effectiveness of the Just-In-Time
(JIT) compiler, which compiles frequently executed methods
and loops into faster native code during execution to speed
up execution. We also compare the object statistics between
generated Java programs and their corresponding original Java
applications (the last column in Table IV), the maximum
difference is 4.8%, which mainly comes from the repeated
creation of root objects in VM global variables. The object
statistics of user-defined classes are nearly identical. This
result demonstrates that GEAR is capable of building real-
world GC workloads from Java applications.

VI. CROSS-RUNTIME GC PERFORMANCE STUDY

We conduct an empirical study to analyze the performance
differences of GC implementations across different runtimes
and explore their potential root causes.

A. Study Methodology

1) Target GC Implementations: We use the same runtimes
as described in Section V, and select one representative GC
implementation in each runtime, i.e., Java ZGC, Go GC
and C# server GC. Java and C# runtimes offer multiple

1https://github.com/anadoba/jvm-gc-benchmark
2https://github.com/kbannach/jvm-gc-benchmark
3https://github.com/jeremysinger/gcbench

GC implementations. In our study, we select the target GC
implementations based on their popularity and the diversity of
their designs.

2) GC Parameters: All target runtimes provide various
parameters for tuning GC performance (e.g., the GC thread
number, GC trigger conditions, region sizes, generation ratio,
etc.). These parameters generally have default heuristic values
and are adaptively adjusted during execution. We did not
explicitly modify any of these parameters. As memory opti-
mizations described in Section V-B may break the consistency
of GC workloads, we turn off these memory optimizations in
our main comparison, and specially analyze the effects of these
optimizations in Section VI-B7.

3) Target Applications: We include the 12 MOP applications
introduced in Section V-A2 in our comparison. These include
three representative memory usage patterns (i.e., WebServer,
Database and BigData) and nine real-world GC workloads
generated from applications that are designed to evaluate the
creation of data structures (i.e., three applications from GitHub
and six applications from Guava Benchmark). Applications
from Rosetta Code are omitted because they focus more
on computation rather than memory usage. Additionally, we
develop four MOP programs that employ multithreading to
construct basic data structures with diverse object reference
graphs, including stack (singly linked list reference graph),
queue (doubly linked list reference graph), tree (binary tree
reference graph), and array (array-based reference graph). In
these four MOP programs, we use element objects within the
data structures of the same class, and ensure a consistent
number of unit objects. These applications cover a variety of
object numbers, sizes and reference relationships, and object
lifecycles, which represent diverse GC workloads.

4) Controlled Variables: To study the performance of GC
implementations in handling different data sizes, we define
small(1×), medium(1.5×), and big(2×) three data sizes for
each application. Similarly, we define low(1×) and high(2×)
two levels of parallelism. To evaluate the GC implementations
under different memory pressures, we configure the heap size
to 1×, 2×, and 3×, with 1× heap size near to the minimum
size that all tested runtime will not trigger Out of Memory
error. In summary, each application has 2×3×3 = 18 different
GC workloads. In addition, for the four basic data structure
applications, we introduce easy and hard modes to simulate
scenarios with high parallelism and large object graphs, as
well as low parallelism with small object graphs. Table V
summarizes the applications and their configurations.

5) Metrics Collection: We enable GC logging in the target
runtimes and profile CPU and memory usage during program
execution. We analyze these logs and profiles to collect metrics
on execution time, GC performance and average resource
usage. Each program is executed on a target runtime three
times with a specified data size, application parallelism and
heap size. We report the evaluation results by averaging the
GC and execution metrics across the three runs.

TABLE V
TARGET APPLICATIONS AND CONFIGURATIONS

Application Parameters
1X Data Size 1X Parallelism 1X Heap Size

Stack-easy 24 GB 10 3 GB
Stack-hard 24 GB 1 256 MB
Queue-easy 24 GB 10 3 GB
Queue-hard 24 GB 1 256 MB
Tree-easy 24 GB 10 3 GB
Tree-hard 24 GB 1 256 MB

Array-easy 24 GB 10 3 GB
Array-hard 24 GB 1 256MB
WebServer 300 GB 10 2GB
DataBase 60 GB 10 6GB
BigData 150 GB 10 12GB
jvm-gc 90 GB 1 1GB

gcbenchmark 90 GB 5 1GB
gcbench 30 GB 5 1GB
Segment 30 GB 1 1GB
Monitor 30 GB 1 1GB

SetCreation 30 GB 1 1GB
Map 30 GB 1 1GB

BinaryTree 30 GB 1 1GB
ImmutableList 30 GB 1 1GB

B. Results and Analyses

In Fig. 5, we present the average execution time of each ap-
plication, calculated across six loads and three heap sizes. We
observe that the execution times for the same GC workloads
vary significantly across different GC implementations, with
the maximum difference for a single GC workload ranging
from 19% to 312%. To understand these differences, we
conduct a controlled variable analysis focusing on different
application features and configurations, examining detailed GC
metrics and execution metrics.

1) Reference Relationships: In the four applications that
construct basic data structures, we use element objects in these
data structures with the same class, number and size. The only
difference lies in the object connectivity graphs, which we
verify by examining heap dumps.

We find that Java ZGC achieves the best performance across
all four applications under all configurations. An in-depth
analysis reveals that Java ZGC consistently has the lowest
average CPU usage, which is 39% lower than Go GC and
48% lower than C# GC. Since the four applications are write-
intensive, we infer that the heavy write barrier overhead in
Go GC and C# GC contributes to their lower performance.
In contrast, Java ZGC employs a lightweight load barrier,
providing significant advantages for write-intensive workloads.

We also find that Java ZGC and Go are more susceptible
to object reference relationships, and they execute slower in
applications where the object graph exhibits lower connectivity
and aggregation. Specifically, for applications stack, queue and
tree, where objects form lengthy linked lists or deep binary
trees, Java ZGC and Go GC execute 1.66× / 1.44×, 1.67× /
1.45 × and 1.91× / 1.69× slower, respectively, compared to
their execution in application array. In-depth analysis reveals
that Java ZGC and Go GC struggle to perform efficient parallel
GC working in singly and doubly linked lists, leading to long
GC cycles. For instance, Java ZGC’s average marking time
in application stack is 2.1× to 3.8× of that in application
array. In contrast, we observe that C# exhibits relatively
stable performance across these four applications. Detailed

analysis shows that the difference in single GC time for C#
between four applications is less than 38%, demonstrating C#’s
advantage in handling object reference graphs with singly or
doubly linked lists.

Finding 1: Java ZGC and Go GC exhibit worse perfor-
mance in applications with linked list reference graphs,
whereas C# GC performance is less affected by object
reference relationships. This indicates that Java ZGC and
Go GC have performance issues when dealing with the
linked list structure.

2) Memory Usage Patterns: We evaluate three memory
usage patterns commonly observed in software systems.

The usage pattern of WebServer involves continuously
generating objects that are generally short-lived with simple
reference relationships, and its memory requirement is rela-
tively low. Consequently, we find that 98.2% GC cycles in
generational C# GC are minor GC cycles targeting the young
generation, with only 0.3% objects are long-lived enough to
be promoted to the old generation.

C# GC achieves the best execution time, but it takes 7.38×
GC pause time compared Go GC, which presents a trade-off
between GC pause and throughput. Conversely, Go GC ex-
hibits particularly poor execution performance in WebServer.
In-depth analysis shows that Go GC is overly conservative in
memory usage. Its heuristic GC trigger threshold is far below
other GC implementations, resulting in only 29.5% / 24.1%
average memory consumption and 3.35× / 16.84× GC cycle
count compared to C# GC / Java ZGC.

Finding 2: In applications with an adequate memory
budget, Go GC performs the worst among the evaluated
GC implementations because its heap adjustment is overly
restrictive. This indicates that Go GC should optimize its
heap adjustment strategy.

The usage pattern of application Database is continuously
generating long-lived objects with complex reference rela-
tionships (e.g., write cache), and periodically releasing them
(e.g., flush cache to disk). Consequently, we observe that the
generational collector C# GC repeatedly performs major GC
to mark and compact the whole heap. Furthermore, 90.8% of
the created objects are promoted to the old generation under
1× heap size configuration.

As a result, C# GC performs the worst in application
Database, and it executes even worse as the configured heap
size increases to 2× and 3×. Our in-depth analysis reveals that
increasing the heap size does not reduce the number of long-
lived objects promoted to the old generation, with promotion
ratios of 89.6% and 88.9% under the 2× and 3× heap size
configurations, respectively. Conversely, non-generational Java
ZGC and non-moving Go GC perform well in Database
application. They experience no promotion overhead for long-
lived objects, and exhibit higher memory efficiency due to
reduced memory fragmentation.

Array-easy Array-hard Stack-easy Stack-hard Queue-easy Queue-hard Tree-easy Tree-hard WebServer DataBase FrameWork jvm-gc gcbenchmark gcbench Segment Monitor SetCreation Map BinaryTree List
0.0

5.0

10.0

15.0

20.0

25.0

30.0
Ex

ec
ut

io
n

Ti
m

e
(s

ec
on

ds
)

4.5

6.4

8.3 8.2 8.3 8.3 8.8
9.9

15.0 15.0

17.6

7.8

10.6

19.8

10.5
9.4

13.8

20.4

7.6

21.5

5.7

18.3

8.3

26.3

8.6

25.9

10.2

30.5 30.1

20.0

16.0

8.8

20.1

9.9

19.7

11.4

18.7

12.3

24.2

12.2

28.8

15.2

10.1 10.2

21.9

17.7

8.6

11.2

16.8 16.6 16.8

JavaZ
Go
C#

Fig. 5. Average execution time of different applications on target GC implementations. We do not have data of Go for applications from GitHub and Guava
Benchmark, because Go does not support the complex inheritance relationships in these applications.

Finding 3: In applications that continuously generate long-
lived objects, C# GC performs 1.33× and 1.92× worse
than Java ZGC and Go GC. This indicates the generational
GC implementation of C# GC struggles to control the
promotion overhead in such applications.

The usage pattern of application Bigdata is maintaining
numerous long-lived objects (i.e., cached data) throughout the
execution, which occupies a significant proportion of memory.
Consequently, we observe all GC implementations suffer from
high-frequency and long-duration GC cycles due to intensive
memory usage. Both GC time and execution time grow rapidly
with the increase of data size. For the example of C# GC, when
the data size increases to 1.5×, the GC time and execution time
increase by 2.01× and 2.99× respectively.

The mostly-concurrent GC implementation Java ZGC does
not perform well in application Bigdata. An in-depth analysis
reveals that it suffers from frequent allocation stalls, occurring
in 84% of its GC cycles. Allocation stalls arise due to memory
exhaustion when GC cycle is still in progress, caused by long-
running GC cycles. Java ZGC experience extremely long GC
cycles in application Bigdata, because it performs whole heap
marking in every GC cycle, resulting in its average GC cycle
time is 84.7× that of generational C# GC.

Finding 4: In applications with a large proportion of long-
lived objects, Java ZGC executes 15.7% slower than C#
GC due to long-duration GC cycles and frequent allocation
stalls. This indicates the non-generational implementation
of Java ZGC struggles with controlling the overhead of
whole heap marking in such applications.

3) Parallelism: We configure different levels of parallelism
under the same total workloads for each application to study
the impact of high concurrency. The result shows that Go
runtime achieves up to 1.62× execution speedup when the par-
allelism increases from 1× to 2×, which is the most significant
among tested runtimes. This indicates its GC implementation
has minimal impact on CPU contention. By contrast, Java ZGC
exhibits the worst performance improvement under increased

parallelism, with even 1.15× slowdown in the application
BigData when parallelism increases. An in-depth analysis
reveals that Java ZGC suffers from 1.27× GC time increase
and 1.27× average CPU usage increase as parallelism grows.
We infer it incurs additional overhead synchronizing object
pointer states under high parallelism.

Finding 5: Java ZGC shows slowdowns in some applica-
tions when parallelism doubles, while Go GC consistently
executes faster as parallelism increases. This indicates Java
ZGC struggles to manage synchronization overhead under
high parallelism.

4) Data Sizes: We vary the data sizes from 1× to 1.5×
and 2× for each application to study the scalability of GC
implementations. The results show that Go GC has the best
scalability, with its execution time increasing by 1.43× and
2.08× as the data size increases to 1.5× and 2×, respectively.
The reason is that Go GC is implemented non-moving GC and
its workflow will not change as the memory usage increases.
As a result, its GC time grows linearly with the data size by
1.49× and 2.08× under 1.5× to 2× data sizes. Other evaluated
GC implementations may experience different of GC cycles
when the memory usage increases, leading to more complex
and heavier GC overhead.

Finding 6: Go scales the best as the data size increase,
because its non-moving design ensures the linear relation-
ship between GC overhead and data size.

5) Heap Sizes: We configure the heap sizes from 1× to 2×
and 3× for each application to study the performance of GC
implementations under relaxed and intensive memory pressure.
For the same application, the evaluated GC implementations
generally perform better as the heap size grows.

6) CPU Consumption: We analyze the average CPU con-
sumption under different GC implementations, the result
shows C# generally consumes fewer CPU resources, using
41% less than Java ZGC in evaluated applications. The pri-
mary reason is that C# GC is a non-concurrent GC implemen-

tation. It does not incur additional GC workload for concurrent
processing, resulting in minimal computational complexity.

7) Memory Optimization: We compare the execution met-
rics and GC metrics with memory optimizations enabled and
disabled. For compressed pointer optimization in the Java
runtime, we use Java G1 instead of Java ZGC for comparison,
as Java ZGC does not support compressed pointer. Our results
show that compressed pointer optimization reduces memory
consumption by 20.6% on average, results in 23.8% GC time
reduction, leading to up to 1.20× execution speedup. For on-
stack replacement in the Go runtime, we find it reduces 7% to
32% heap object creation, results in 13% GC time reduction
and 1.08× execution speedup. In summary, both compressed
pointer optimization and on-stack replacement enhance GC
performance and execution efficiency, making them valuable
features for adoption in GC implementations in other runtimes.

VII. DISCUSSION

Extending to other runtimes. MOP is designed based on the
typical object model used in modern managed language run-
times, and includes only fundamental memory operations. This
enables MOP to be converted to other runtimes that use similar
object model, such as JavaScript, Python and Objective-C,
regardless of the underlying mechanisms employed by the
runtimes to achieve automatic memory management. To apply
GEAR to a new language, we need to establish the conversion
relations between MOP and the target language. For developers
familiar with the target language, this typically requires around
100 lines of code and about one day of work, representing a
relatively small effort.

Threats to validity. For the target applications, we carefully
design and sample them to encompass diverse memory usage
patterns. These applications vary in object quantities, sizes,
reference relationships, and object lifecycles, representing
diverse GC workloads. We test each application with three
different data sizes, two levels of application parallelism,
and three heap sizes, resulting in 18 distinct workloads.
This comprehensive approach ensures our evaluation covers
a representative sample of GC workloads.

Different runtimes will introduce some noise due to their
varying execution efficiency of the same instructions. How-
ever, this kind of noise should have consistent consequences
across different applications for different runtimes. In our
experiment, we mainly analyze the inconsistent behaviors
across different applications for different runtimes. In such
cases, the inconsistent behaviors should be caused by the
difference in GC implementations.

VIII. RELATED WORK

A. Cross-language Evaluation

Lion et al. conducted an in-depth performance analysis of
Java, Go, JavaScript and Python, using C++ as a baseline [31].
Prokopski et al. studied code-copying optimizations in the
SableVM, OCaml, and Yarv interpreters [53]. Oliveira et al.
investigated the energy consumption of different Android app
development approaches (Java, JavaScript and C/C++) [37].

Marr et al. designed a benchmark suite for evenly comparing
a common subset of language abstractions [39]. TailBench
developed a methodology for measuring latency-critical ap-
plications in C++ and Java [42]. Nanz et al. utilized Rosetta
Code [44] to present statistical findings [33] and studied the
usability and performance of Chapel, Cilk, and Go in multicore
workloads [32]. All these approaches do not specifically focus
on GC performance evaluations. Thus, our work is orthogonal
to these studies.

B. GC Algorithm Evaluation
Cai et al. [54] conducted a purified evaluation method to

assess the minimum CPU and time overhead of application
threads, subsequently calculating the relative overhead propor-
tions of various GC algorithms. Sareen et al. [55] evaluated
the spatial overhead of different GC algorithms, examining
the impact of collection frequency, locality effects, and the
influence of delayed collection by comparing them with im-
mediate allocation and release methods. Zhao [22] restructured
the classic G1 algorithm and performed modular quantitative
evaluations of each technique employed. Blackburn et al. [56]
and Yang et al. [57] analyzed the costs of read and write
barriers in GC algorithms. Xu et al. [7] and Sriram et al. [58]
conducted comparative testing of traditional GC algorithms
within big data processing frameworks, evaluating the CPU
and pause time costs of various GC implementations. All these
works focus on evaluating GC implementations within the
same runtime. Our work complements these studies.

IX. CONCLUSION

In this paper, we propose GEAR to create consistent GC
workloads for different managed language runtimes. We first
propose a group of runtime-agnostic Memory Operation Prim-
itive MOP to portray the memory operations related to GC,
and automatically convert a MOP program into runtime-specific
programs. To build MOP programs with real-world GC work-
loads, we instrument the JVM to collect memory operation
traces during a Java application’s execution, and automatically
transform and simplify a memory operation trace into a MOP
program. We further perform an empirical study on three
widely-used runtimes, and reveal some interesting findings
about their GC performance.

In the future, we plan to extend GEAR to support additional
runtimes and use existing MOP programs to evaluate their
GC implementations, thereby identifying their potential per-
formance shortcomings. Additionally, we plan to automatically
generate more MOP programs, aiming to discover potential
logic bugs in GC through these generated MOP programs.

ACKNOWLEDGMENTS

This work was partially supported by National Natural
Science Foundation of China (62072444, 62302493), Ma-
jor Project of ISCAS (ISCAS-ZD-202302), Basic Research
Project of ISCAS (ISCAS-JCZD-202403), and Youth Inno-
vation Promotion Association at Chinese Academy of Sci-
ences (Y2022044). This work was also partially supported by
Huawei.

REFERENCES

[1] T. S. BV, “Tiobe index for july 2024,” Jul. 2024, accessed: 2024-07-31.
[Online]. Available: https://www.tiobe.com/tiobe-index/

[2] GitHub, “The state of the octoverse,” https://octoverse.github.com, 2024,
accessed: 2024-07-24.

[3] R. Jones, A. Hosking, and E. Moss, The garbage collection handbook:
the art of automatic memory management, 2023.

[4] Y. Bu, V. Borkar, G. Xu, and M. J. Carey, “A bloat-aware design for
big data applications,” in Proceedings of International Symposium on
Memory Management (ISMM), 2013, pp. 119–130.

[5] K. Suo, J. Rao, H. Jiang, and W. Srisa-an, “Characterizing and op-
timizing hotspot parallel garbage collection on multicore systems,” in
Proceedings of EuroSys Conference (EuroSys), 2018, pp. 1–15.

[6] Y. Yu, T. Lei, W. Zhang, H. Chen, and B. Zang, “Performance analysis
and optimization of full garbage collection in memory-hungry environ-
ments,” ACM SIGPLAN Notices, vol. 51, no. 7, pp. 123–130, 2016.

[7] L. Xu, T. Guo, W. Dou, W. Wang, and J. Wei, “An experimental
evaluation of garbage collectors on big data applications,” in Proceedings
of International Conference on Very Large Data Bases (VLDB), 2019,
pp. 540–583.

[8] R. Bruno, L. P. Oliveira, and P. Ferreira, “NG2C: Pretenuring garbage
collection with dynamic generations for hotspot big data applications,”
in Proceedings of ACM SIGPLAN International Symposium on Memory
Management (ISMM), 2017, pp. 2–13.

[9] R. Bruno, D. Patricio, J. Simão, L. Veiga, and P. Ferreira, “Runtime
object lifetime profiler for latency sensitive big data applications,” in
Proceedings of EuroSys Conference (EuroSys), 2019, pp. 1–16.

[10] M. Wu, Z. Zhao, Y. Yang, H. Li, H. Chen, B. Zang, H. Guan, S. Li,
C. Lu, and T. Zhang, “Platinum: A CPU-efficient concurrent garbage
collector for tail-reduction of interactive services,” in Proceedings of
USENIX Annual Technical Conference (USENIX ATC), 2020, pp. 159–
172.

[11] The Go Authors, “A guide to the go garbage collector,” https://tip.golang.
org/doc/gc-guide, 2024, accessed: 2024-07-24.

[12] P. S. Foundation, “gc — garbage collector interface,” https://docs.python.
org/3/library/gc.html, 2024, accessed: 2024-07-24.

[13] OpenJDK, “Z Garbage Collector (ZGC),” https://wiki.openjdk.org/
display/zgc/Main, Accessed: 2024-07-25.

[14] Microsoft Learn, “Workstation vs. server garbage collection
(gc),” https://learn.microsoft.com/dotnet/standard/garbage-collection/
workstation-server-gc, 2023, accessed: 2024-07-24.

[15] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer et al., “The dacapo benchmarks: Java benchmarking development
and analysis,” in Proceedings of ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications, 2006, pp.
169–190.

[16] A. Prokopec, A. Rosa, D. Leopoldseder, G. Duboscq, P. Tuma, M. Stu-
dener, L. Bulej, Y. Zheng, A. Villazon, D. Simon et al., “Renaissance:
Benchmarking suite for parallel applications on the jvm,” in Proceedings
of ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2019, pp. 31–47.

[17] S. P. E. Corporation, “Specjbb®2015,” https://www.spec.org/jbb2015/,
2024, accessed: 2024-07-24.

[18] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The hibench bench-
mark suite: Characterization of the mapreduce-based data analysis,”
in Proceedings of IEEE International conference on data engineering
workshops (ICDEW), 2010, pp. 41–51.

[19] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of
ACM symposium on Cloud computing, 2010, pp. 143–154.

[20] N. Cohen and E. Petrank, “Data structure aware garbage collector,”
in Proceedings of International Symposium on Memory Management
(ISMM), 2015, pp. 28–40.

[21] A. M. Yang, E. Österlund, J. Wilhelmsson, H. Nyblom, and T. Wrigstad,
“Thingc: Complete isolation with marginal overhead,” in Proceedings
of ACM SIGPLAN International Symposium on Memory Management
(ISMM), 2020, pp. 74–86.

[22] W. Zhao, S. M. Blackburn, and K. S. McKinley, “Low-latency, high-
throughput garbage collection,” in Proceedings of ACM SIGPLAN
International Conference on Programming Language Design and Im-
plementation (PLDI), 2022, pp. 76–91.

[23] M. Wu, L. Mao, Y. Lin, Y. Jin, Z. Li, H. Lyu, J. Tang, X. Lu,
H. Tang, D. Dong et al., “Jade: A high-throughput concurrent copying

garbage collector,” in Proceedings of European Conference on Computer
Systems, 2024, pp. 1160–1174.

[24] “Which language has a better garbage collec-
tion, java or golang?” https://www.quora.com/
Which-language-has-a-better-garbage-collection-Java-or-Golang,
2024, accessed: 2024-07-29.

[25] “Garbage collection in java vs. c++ and python,”
https://www.quora.com/How-does-garbage-collection-work-in-Java-
compared-to-other- languages-such-as-C-or-Python, 2024, accessed:
2024-07-29.

[26] H. News, “Anyone have a good comparison of .net vs java gcs? i
never had trouble with the ...” https://news.ycombinator.com/item?id=
25879344, 2024, accessed: 2024-07-29.

[27] “Which language has better garbage collection,
java or .net (c#)? why?” https://www.quora.com/
Which-language-has-better-garbage-collection-Java-or-NET-C-Why,
2024, accessed: 2024-07-29.

[28] M. Maas, K. Asanović, and J. Kubiatowicz, “Return of the runtimes:
Rethinking the language runtime system for the cloud 3.0 era,” in
Proceedings of the 16th Workshop on Hot Topics in Operating Systems,
2017, pp. 138–143.

[29] R. Bruno and P. Ferreira, “A study on garbage collection algorithms
for big data environments,” ACM Computing Surveys (CSUR), vol. 51,
no. 1, pp. 1–35, 2018.

[30] C. Navasca, C. Cai, K. Nguyen, B. Demsky, S. Lu, M. Kim, and
G. H. Xu, “Gerenuk: Thin computation over big native data using
speculative program transformation,” in Proceedings of ACM Symposium
on Operating Systems Principles, 2019, pp. 538–553.

[31] D. Lion, A. Chiu, M. Stumm, and D. Yuan, “Investigating managed
language runtime performance: Why {JavaScript} and python are 8x and
29x slower than c++, yet java and go can be faster?” in Proceedings of
USENIX Annual Technical Conference (USENIX ATC), 2022, pp. 835–
852.

[32] S. Nanz and C. A. Furia, “A comparative study of programming
languages in rosetta code,” in Proceedings of IEEE/ACM International
Conference on Software Engineering, vol. 1, 2015, pp. 778–788.

[33] S. Nanz, S. West, K. S. Da Silveira, and B. Meyer, “Benchmarking
usability and performance of multicore languages,” in Proceedings of
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, 2013, pp. 183–192.

[34] S. Jiang, R. Zeng, Z. Rao, J. Gu, Y. Zhou, and M. R. Lyu, “Revealing
performance issues in server-side webassembly runtimes via differential
testing,” in 2023 38th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). IEEE, 2023, pp. 661–672.

[35] S. M. Blackburn, P. Cheng, and K. S. McKinley, “Oil and water? high
performance garbage collection in java with mmtk,” in Proceedings. 26th
International Conference on Software Engineering. IEEE, 2004, pp.
137–146.

[36] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. P. Fernandes,
and J. Saraiva, “Ranking programming languages by energy efficiency,”
Science of Computer Programming, vol. 205, p. 102609, 2021.

[37] W. Oliveira, R. Oliveira, and F. Castor, “A study on the energy con-
sumption of android app development approaches,” in Proceedings of
IEEE/ACM International Conference on Mining Software Repositories
(MSR), 2017, pp. 42–52.

[38] M. Weber, C. Kaltenecker, F. Sattler, S. Apel, and N. Siegmund, “Twins
or false friends? a study on energy consumption and performance of con-
figurable software,” in 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). IEEE, 2023, pp. 2098–2110.

[39] S. Marr, B. Daloze, and H. Mössenböck, “Cross-language compiler
benchmarking: are we fast yet?” ACM SIGPLAN Notices, vol. 52, no. 2,
pp. 120–131, 2016.

[40] T. Würthinger, C. Wimmer, C. Humer, A. Wöß, L. Stadler, C. Seaton,
G. Duboscq, D. Simon, and M. Grimmer, “Practical partial evaluation
for high-performance dynamic language runtimes,” in Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2017, pp. 662–676.

[41] O. Larose, S. Kaleba, H. Burchell, and S. Marr, “Ast vs. bytecode:
interpreters in the age of meta-compilation,” Proceedings of the ACM
on Programming Languages, vol. 7, no. OOPSLA2, pp. 318–346, 2023.

[42] H. Kasture and D. Sanchez, “Tailbench: a benchmark suite and evalu-
ation methodology for latency-critical applications,” in Proceedings of
IEEE International Symposium on Workload Characterization (IISWC),
2016, pp. 1–10.

https://www.tiobe.com/tiobe-index/
https://octoverse.github.com
https://tip.golang.org/doc/gc-guide
https://tip.golang.org/doc/gc-guide
https://docs.python.org/3/library/gc.html
https://docs.python.org/3/library/gc.html
https://wiki.openjdk.org/display/zgc/Main
https://wiki.openjdk.org/display/zgc/Main
https://learn.microsoft.com/dotnet/standard/garbage-collection/workstation-server-gc
https://learn.microsoft.com/dotnet/standard/garbage-collection/workstation-server-gc
https://www.spec.org/jbb2015/
https://www.quora.com/Which-language-has-a-better-garbage-collection-Java-or-Golang
https://www.quora.com/Which-language-has-a-better-garbage-collection-Java-or-Golang
https://news.ycombinator.com/item?id=25879344
https://news.ycombinator.com/item?id=25879344
https://www.quora.com/Which-language-has-better-garbage-collection-Java-or-NET-C-Why
https://www.quora.com/Which-language-has-better-garbage-collection-Java-or-NET-C-Why

[43] Google, “Guava: Google core libraries for java,” https://github.com/
google/guava, 2024, accessed: 2024-07-25.

[44] Rosetta Code, “Rosetta code: Programming tasks for various languages,”
https://rosettacode.org/wiki/Rosetta Code, 2024, accessed: 2024-07-29.

[45] Baeldung, “Java memory layout explained,” n.d., accessed: 2024-11-25.
[Online]. Available: https://www.baeldung.com/java-memory-layout

[46] Baeldung, “Understanding java garbage collection roots,” n.d.,
accessed: 2024-11-26. [Online]. Available: https://www.baeldung.com/
java-gc-roots

[47] The Apache Software Foundation, “Apache tomcat,” 2024, accessed:
2024-07-25. [Online]. Available: https://tomcat.apache.org

[48] A. Lakshman and P. Malik, “Cassandra: A decentralized structured
storage system,” ACM SIGOPS operating systems review, vol. 44, no. 2,
pp. 35–40, 2010.

[49] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” The Bulletin of the Technical Committee on Data Engineering,
vol. 38, no. 4, 2015.

[50] GitHub, Inc., “Github: Where the world builds software,” 2024,
accessed: 2024-11-26. [Online]. Available: https://github.com

[51] H. Almulla, A. Salahirad, and G. Gay, “Using search-based test gen-
eration to discover real faults in guava,” in Search Based Software
Engineering: 9th International Symposium, SSBSE 2017, Paderborn,
Germany, September 9-11, 2017, Proceedings 9. Springer, 2017, pp.

153–160.
[52] Microsoft, “Perfview,” 2024, accessed: 2024-07-25. [Online]. Available:

https://github.com/microsoft/perfview
[53] G. B. Prokopski and C. Verbrugge, “Analyzing the performance of code-

copying virtual machines,” ACM Sigplan Notices, vol. 43, no. 10, pp.
403–422, 2008.

[54] Z. Cai, S. M. Blackburn, M. D. Bond, and M. Maas, “Distilling the
real cost of production garbage collectors,” in Proceedings of IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2022, pp. 46–57.

[55] K. Sareen and S. M. Blackburn, “Better understanding the costs and
benefits of automatic memory management,” in Proceedings of Interna-
tional Conference on Managed Programming Languages and Runtimes,
2022, pp. 29–44.

[56] S. M. Blackburn and A. L. Hosking, “Barriers: Friend or foe?” in
Proceedings of international symposium on Memory management, 2004,
pp. 143–151.

[57] X. Yang, S. M. Blackburn, D. Frampton, and A. L. Hosking, “Barriers
reconsidered, friendlier still!” ACM SIGPLAN Notices, vol. 47, no. 11,
pp. 37–48, 2012.

[58] A. Sriram, A. Nair, A. Simon, S. Kalambur, and D. Sitaram, “A study
on the causes of garbage collection in java for big data workloads,” in
Proceedings of IEEE International Conference on Big Data (Big Data),
2020, pp. 5831–5833.

https://github.com/google/guava
https://github.com/google/guava
https://rosettacode.org/wiki/Rosetta_Code
https://www.baeldung.com/java-memory-layout
https://www.baeldung.com/java-gc-roots
https://www.baeldung.com/java-gc-roots
https://tomcat.apache.org
https://github.com
https://github.com/microsoft/perfview

	Introduction
	Background
	Typical Object Model
	Typical GC Workflow
	Design Choices in GC Implementations

	GC Evaluation Across Runtimes
	Memory Operation Primitives
	Object Structure
	Object Creation
	Object Reference Update
	Code Structure

	MOP Programs to Runtime-Specific Programs
	Class Structure Conversion
	Method Conversion

	Memory Operation Trace Collection
	Class Information Collection
	Memory Operation Collection

	Memory Operation Traces to MOP Programs
	Trace Filtering
	Initial Transformation
	MOP Program Simplification

	Implementation
	JVM Instrumentation
	Class Information
	Object Creation
	Object Reference
	Root Object
	Thread Information

	Special Feature Handling

	Evaluation
	Experimental Methodology
	Environment Setup
	Experimental Applications
	Experimental Process

	Consistent GC Workload Construction
	Real-World Workload Generation

	Cross-Runtime GC Performance Study
	Study Methodology
	Target GC Implementations
	GC Parameters
	Target Applications
	Controlled Variables
	Metrics Collection

	Results and Analyses
	Reference Relationships
	Memory Usage Patterns
	Parallelism
	Data Sizes
	Heap Sizes
	CPU Consumption
	Memory Optimization

	Discussion
	Related Work
	Cross-language Evaluation
	GC Algorithm Evaluation

	Conclusion
	References

