
Testing Gremlin-Based Graph Database Systems viaQuery
Disassembling

Yingying Zheng∗
Wensheng Dou∗†‡

Institute of Software at CAS, China

Lei Tang∗
Ziyu Cui∗

Institute of Software at CAS, China

Yu Gao∗
Jiansen Song∗

Institute of Software at CAS, China

Liang Xu
Jinling Institute of Technology, China

Jiaxin Zhu∗†
Institute of Software at CAS, China

Wei Wang∗†
Institute of Software at CAS, China

Jun Wei∗†
Institute of Software at CAS, China

Hua Zhong∗
Institute of Software at CAS, China

Tao Huang∗
Institute of Software at CAS, China

Abstract
Graph Database Systems (GDBs) support efficiently storing and
retrieving graph data, and have become a critical component in
many important applications. Many widely-used GDBs utilize the
Gremlin query language to create, modify, and retrieve data in
graph databases, in which developers can assemble a sequence
of Gremlin APIs to perform a complex query. However, incorrect
implementations and optimizations of GDBs can introduce logic
bugs, which can cause Gremlin queries to return incorrect query
results, e.g., omitting vertices in a graph database.

In this paper, we propose Query Disassembling (QuDi), an effec-
tive testing technique to automatically detect logic bugs in Gremlin-
based GDBs. Given a Gremlin query 𝑄 , QuDi disassembles 𝑄 into a
sequence of atomic graph traversals 𝑇𝐿𝑖𝑠𝑡 , which shares the equiv-
alent execution semantics with 𝑄 . If the execution results of 𝑄 and
𝑇𝐿𝑖𝑠𝑡 are different, a logic bug is revealed in the target GDB. We
evaluate QuDi on six popular GDBs, and have found 25 logic bugs
in these GDBs, 10 of which have been confirmed as previously-
unknown bugs by GDB developers.

CCS Concepts
• Information systems→ Database query processing; • Software
and its engineering→ Software testing and debugging.

Keywords
Graph database systems, graph traversal, logic bug, bug detection
ACM Reference Format:
Yingying Zheng, Wensheng Dou, Lei Tang, Ziyu Cui, Yu Gao, Jiansen Song,
Liang Xu, Jiaxin Zhu, Wei Wang, Jun Wei, Hua Zhong, and Tao Huang. 2024.

∗Affiliated with Key Lab of System Software at CAS, State Key Lab of Computer Science
at Institute of Software at CAS, and University of CAS, Beijing. CAS is the abbreviation
of Chinese Academy of Sciences.
†Affiliated with Nanjing Institute of Software Technology, University of CAS, Nanjing.
‡Wensheng Dou (wsdou@otcaix.iscas.ac.cn) is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ISSTA ’24, September 16–20, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3680392

Testing Gremlin-Based Graph Database Systems via Query Disassembling.
In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software
Testing andAnalysis (ISSTA ’24), September 16–20, 2024, Vienna, Austria.ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3650212.3680392

1 Introduction
Graph Database Systems (GDBs) [58] support efficient storage and
queries for graph data, which consists of vertices and edges. The
popularity of GDBs has increased dramatically recently, and GDBs
have played a significant role in many important applications, e.g.,
social networks [35], knowledge graphs [26, 45], and fraud detection
[50]. According to the latest DB-Engines Ranking of GDBs [3], there
have already been 41 widely-used GDBs, e.g., Neo4j [12], OrientDB
[16], NebulaGraph [15], JanusGraph [8], and TigerGraph [33].

Unlike relational database systems that utilize declarative Struc-
tured Query Language (SQL) to access relational data, e.g., MySQL
[10], MariaDB [9], TiDB [21], and PostgreSQL [17], GDBs do not
have a standardized way to access graph data, and usually utilize
their own query languages, e.g., nGQL [11] in NebulaGraph and
GSQL [32] in TigerGraph. However, about half of the GDBs in the
DB-Engines Ranking [3], e.g., Neo4j [12], OrientDB [16], Janus-
Graph [8], HugeGraph [6], TinkerGraph [22], and ArcadeDB [14],
support the procedural Gremlin query language [4, 54], which is
developed by Apache TinkerPop [22]. We refer to these GDBs that
support the Gremlin query language as Gremlin-based GDBs.

The Gremlin query language used in Gremlin-based GDBs has
totally different syntaxes and query patterns with SQL in relational
database systems. Specifically, the Gremlin query language provides
a group of Gremlin APIs to create, modify, and retrieve graph data.
Developers can further assemble a sequence of Gremlin APIs and
generate complex queries to achieve complex graph analyses.

To improve the performance of Gremlin queries, GDBs usually
adopt complex execution and optimization strategies [5, 7], e.g.,
reordering filtering operations to execute cheaper operations first
and merging filtering conditions for efficient graph queries. Unsur-
prisingly, the above complexity poses a major correctness challenge
for GDBs. Incorrect implementations and optimizations of GDBs
can introduce logic bugs, which can silently cause the GDBs to
return an incorrect query result for a given Gremlin query without
crashing the GDBs, e.g., omitting vertices in a graph database.

Figure 1 shows a real-world logic bug ArcadeDB#500 that we de-
tected in ArcadeDB [14]. In this logic bug, the Gremlin query (Line 1)

https://doi.org/10.1145/3650212.3680392
https://doi.org/10.1145/3650212.3680392

ISSTA ’24, September 16–20, 2024, Vienna, Austria Y. Zheng, W. Dou, L. Tang, Z. Cui, Y. Gao, J. Song, L. Xu, J. Zhu, W. Wang, J. Wei, H. Zhong, and T. Huang

1 g.V().has('person ','age',lt(30)).hasLabel('person ','book');
2 -- v:{1,2,3,4} ✘
3 -- v:{1,4} ✔

Figure 1: A logic bug ArcadeDB#500 detected by our approach
in ArcadeDB [14]. This Gremlin query wrongly retrieves all
vertices, rather than persons who are less than 30 years old
in Figure 2.

in Figure 1 first retrieves all vertices of the graph shown in Figure 2
(𝑔.𝑉 ()), and then keeps 𝑝𝑒𝑟𝑠𝑜𝑛 vertices in which the 𝑎𝑔𝑒 property is
less than 30 (ℎ𝑎𝑠 (′𝑝𝑒𝑟𝑠𝑜𝑛′,′ 𝑎𝑔𝑒′, 𝑙𝑡 (30))), and then keeps vertices
that have a label 𝑝𝑒𝑟𝑠𝑜𝑛 or 𝑏𝑜𝑜𝑘 (ℎ𝑎𝑠𝐿𝑎𝑏𝑒𝑙 (′𝑝𝑒𝑟𝑠𝑜𝑛′,′ 𝑏𝑜𝑜𝑘′)). For
this query, its correct result should be 𝑣 :{1, 4}. However, Arcad-
eDB returns an incorrect result 𝑣 :{1, 2, 3, 4}. ArcadeDB developers
explained that this logic bug was caused by the incorrect implemen-
tation for the assembly of multiple filtering conditions, and fixed it
quickly after we submitted it.

Logic bugs in GDBs are likely to go unnoticed by GDB develop-
ers, because we lack an effective test oracle for automatic testing to
verify whether a GDB behaves correctly for a given Gremlin query,
thus detecting logic bugs. Some approaches [39, 62, 64] adopt dif-
ferential testing [49] to reveal discrepancies among multiple GDBs
for the same graph database and graph queries. The clear drawback
of this technique is that it cannot detect the same bugs that exist
in all target GDBs and can only be used to test common features
in target GDBs. GDBMeter [42] adopts Ternary Logic Partitioning
(TLP) [52] to derive a graph query into three disjoint sub-queries
based on a randomly generated predicate, and only focuses on
detecting predicate-related bugs. Furthermore, some testing ap-
proaches [27, 30, 37, 51–53, 56, 57] have proposed new test oracles
to effectively find logic bugs in an individual relational database
system. However, these approaches cannot be applied on Gremlin-
based GDBs because the procedural Gremlin query language adopts
different syntaxes and query patterns from declarative SQL.

We observe that a complex Gremlin query can be disassembled
into a sequence of atomic graph traversals (an atomic graph tra-
versal can achieve one-step traversal in the graph database), which
shares the equivalent execution semantics as the original query. In-
spired by this observation, we propose Query Disassembling (QuDi),
an effective test oracle to reveal logic bugs in individual Gremlin-
based GDBs. Specifically, given a Gremlin query 𝑄 , we disassemble
it into a sequence of atomic graph traversals𝑇𝐿𝑖𝑠𝑡 =< 𝑇1,𝑇2, ...,𝑇𝑛 >,
in which 𝑇𝑖 denotes the 𝑖-th atomic graph traversal in 𝑄 . Then, for
an atomic graph traversal 𝑇𝑖 in 𝑇𝐿𝑖𝑠𝑡 , we construct a query, which
takes the result 𝑅𝑆𝑇𝑖−1 of its previous traversal 𝑇𝑖−1 as input, and
computes its result 𝑅𝑆𝑇𝑖 . In such case, query 𝑄 and its disassem-
bled graph traversal sequence𝑇𝐿𝑖𝑠𝑡 share the equivalent execution
semantics, and should obtain the same result. That said, query 𝑄 ’s
result 𝑅𝑆𝑄 must be equal to the result 𝑅𝑆𝑇𝑛 of the last traversal 𝑇𝑛
in 𝑇𝐿𝑖𝑠𝑡 . Otherwise, a potential logic bug is detected in the target
GDB. We further propose three execution strategies to implement
this test oracle, aiming at finding more logic bugs. By disassem-
bling a complex Gremlin query into a sequence of atomic graph
traversals, QuDi can prevent some GDB optimizations from kicking
in, and thus can detect logic bugs caused by the assembly of atomic
graph traversals and related optimizations.

book
v:2write

read

name: Alice
age: 26

name: Nancy
age: 30

title: Hello World
language: English

v:1
person

v:3
person

v:4
person

name: Bob
age: 21

read

e:1
e:2

e:3

time: 2

since: 2020
time

: 5

Figure 2: A labeled property graph.

We implement the above technique as QuDi, and evaluate QuDi
on six popular Gremlin-based GDBs, i.e., Neo4j [12], OrientDB [16],
JanusGraph [8], HugeGraph [6], TinkerGraph [22], and ArcadeDB
[14]. At the time of writing this paper, we have found 25 logic bugs
in these GDBs. Among them, 17 logic bugs have been confirmed
by GDB developers, in which, 10 bugs are classified as previously-
unknown bugs, and 7 bugs are classified as duplicate to existing
bugs. 8 bugs have been fixed by GDB developers. For the 17 con-
firmed bugs, 11 bugs are caused by incorrect implementations and
optimizations about the assembly of atomic graph traversals, and
the remaining 6 bugs are caused by incorrect implementations of
atomic graph traversals.

The idea of query disassembling is inspired by the following
key observation: A complex query 𝑄 for a database system can
be disassembled into multiple atomic queries 𝐴𝑡𝑜𝑚𝑖𝑐𝑄s, and the
assembly of 𝐴𝑡𝑜𝑚𝑖𝑐𝑄s can compute the same query result as 𝑄 .
In this paper, we only apply the idea of query disassembling on
Gremlin-based GDBs. However, query disassembling is a general
idea, and can be potentially applicable on other database systems.
First, some other graph query languages e.g., Cypher [24] and
SPARQL [18], also support the above key observation, and we can
extend query disassembling on those GDBs that support these query
languages. Second, SQL queries in relational database systems can
support sub-queries and joins (e.g., SELECT * FROM (SELECT *
FROM t1 JOIN t2)), which can also be disassembled into atomic
queries. More discussions can be found in Section 5.

In summary, we make the following contributions in this paper.
• We propose a general and effective test oracle, query disassem-
bling, for finding logic bugs in individual GDBs. By disassem-
bling a complex query into an equivalent atomic graph traversal
sequence, we can reveal logic bugs related to incorrect imple-
mentations and optimizations of Gremlin queries in GDBs.
• We evaluate QuDi on six widely-used GDBs. In total, we have
detected 25 logic bugs in them, 10 of which have been confirmed
as previously-unknown bugs by GDB developers.

2 Preliminaries
We first explain the labeled property graph model adopted by many
GDBs (Section 2.1), and then introduce the Gremlin query language
(Section 2.2) and its traversal model (Section 2.3). Finally, we briefly
explain the Gremlin queries’ execution (Section 2.4).

2.1 Labeled Property Graph Model
Most GDBs are built on the labeled property graph model [58] to
efficiently store and retrieve graph data. A labeled property graph
model consists of a set of vertices and edges associated with these
vertices. Each vertex (edge) has a label to divide it into different

Testing Gremlin-Based Graph Database Systems viaQuery Disassembling ISSTA ’24, September 16–20, 2024, Vienna, Austria

Vertex ::= 𝑔.𝑉 () ∥ Vertex.[Filter | 𝑜𝑢𝑡 () | 𝑖𝑛 () | 𝑏𝑜𝑡ℎ () | 𝑜𝑟𝑑𝑒𝑟 () .𝑏𝑦 ()] ∥ Edge.[𝑜𝑢𝑡𝑉 () | 𝑖𝑛𝑉 () | 𝑏𝑜𝑡ℎ𝑉 ()]
Edge ::= 𝑔.𝐸 () ∥ Edge.[Filter | 𝑜𝑟𝑑𝑒𝑟 () .𝑏𝑦 ()] ∥ Vertex.[𝑜𝑢𝑡𝐸 () | 𝑖𝑛𝐸 () | 𝑏𝑜𝑡ℎ𝐸 ()]

Filter ::= ℎ𝑎𝑠 (Predicate) ∥ ℎ𝑎𝑠𝑁𝑜𝑡 () ∥ ℎ𝑎𝑠𝐿𝑎𝑏𝑒𝑙 () ∥ 𝑤ℎ𝑒𝑟𝑒 (Predicate) ∥ 𝑠𝑎𝑚𝑝𝑙𝑒 () ∥ [𝑛𝑜𝑡 | 𝑎𝑛𝑑 | 𝑜𝑟] ([Filter |Vertex |Edge])
Predicate ::= 𝑒𝑞 () ∥ 𝑛𝑒𝑞 () ∥ 𝑙𝑡 () ∥ 𝑙𝑡𝑒 () ∥ 𝑔𝑡 () ∥ 𝑔𝑡𝑒 () ∥ 𝑖𝑛𝑠𝑖𝑑𝑒 () ∥ 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 () ∥ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 () ∥ [𝑛𝑜𝑡 | 𝑎𝑛𝑑 | 𝑜𝑟] (Predicate)

Value ::= [Vertex | Edge] .𝑐𝑜𝑢𝑛𝑡 () ∥ [Vertex | Edge] .𝑣𝑎𝑙𝑢𝑒𝑠 () .[𝑠𝑢𝑚 () |𝑚𝑒𝑎𝑛 () |𝑚𝑖𝑛 () |𝑚𝑎𝑥 () | 𝑐𝑜𝑢𝑛𝑡 ()]

Figure 3: The abstract traversal model in the Gremlin query language [64].

vertex (edge) groups, and has a set of properties to describe its
attributes. Figure 2 shows a labeled property graph that consists of
four vertices and three edges. Specifically, three vertices with label
𝑝𝑒𝑟𝑠𝑜𝑛 (i.e., 𝑣 :1, 𝑣 :3 and 𝑣 :4) have two properties, i.e., 𝑛𝑎𝑚𝑒 and 𝑎𝑔𝑒 ,
while a vertex with label 𝑏𝑜𝑜𝑘 (i.e., 𝑣 :2) has 𝑡𝑖𝑡𝑙𝑒 and 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 prop-
erties whose values are ‘Hello World’ and ‘English’, respectively.
One edge labeled by𝑤𝑟𝑖𝑡𝑒 (i.e., 𝑒 :1) has a 𝑠𝑖𝑛𝑐𝑒 property with value
‘2020’, while two edges with label 𝑟𝑒𝑎𝑑 (i.e., 𝑒 :2 and 𝑒 :3) have a 𝑡𝑖𝑚𝑒

property with value 5 and 2, respectively. All three edges associate
𝑝𝑒𝑟𝑠𝑜𝑛 vertices to 𝑏𝑜𝑜𝑘 vertices, and they are directed. For example,
edge 𝑒:1 means that 𝑝𝑒𝑟𝑠𝑜𝑛 𝑣 :1 writes 𝑏𝑜𝑜𝑘 𝑣 :2.

2.2 Gremlin Query Language
GDBs utilize graph query languages to create, modify and retrieve
graph data in graph databases. Many graph query languages have
been proposed for GDBs [25]. For example, Apache TinkerPop
[23] develops Gremlin [4, 54], Neo4j [38] develops Cypher [36],
NebulaGraph [15, 59] develops nGQL [11], and TigerGraph [33]
develops GSQL [32], to retrieve graph data from graph databases.
According to the DB-Engines Ranking of GDBs [3], Gremlin is one
of the most popular and widely-used graph query language, which
has been supported by about half of the 41 GDBs. Specially, 6 out
of the top 10 GDBs support Gremlin APIs.

Gremlin is a functional and procedural query language, and al-
lows developers to assemble a sequence of Gremlin APIs to form
complex queries. Specifically, a Gremlin query, startingwith a Grem-
lin traversal source 𝑔, can traverse a labeled property graph by
assembling a sequence of Gremlin APIs after 𝑔. For example, the
Gremlin query in Figure 1 consists of four Gremlin APIs, i.e., 𝑉 (),
ℎ𝑎𝑠 (), 𝑙𝑡 () and ℎ𝑎𝑠𝐿𝑎𝑏𝑒𝑙 (), in which 𝑉 () retrieves all vertices from
the graph data in Figure 2, ℎ𝑎𝑠 () and ℎ𝑎𝑠𝐿𝑎𝑏𝑒𝑙 () keep vertices that
satisfy the given filtering conditions, and 𝑙𝑡 () is a parameter in
ℎ𝑎𝑠 (). Besides these Gremlin query APIs, Gremlin also provides a
series of update APIs. For example, we can add vertices (edges) by
𝑎𝑑𝑑𝑉 () (𝑎𝑑𝑑𝐸 ()) in a graph database, and delete vertices or edges
by 𝑑𝑟𝑜𝑝 (). In this paper, we mainly focus on Gremlin query APIs.

2.3 Gremlin Traversal Model
A Gremlin query consists of a sequence of Gremlin APIs, which
are linked together. Zheng et al. [64] propose an abstract Gremlin
traversal model to explain how to construct valid Gremlin queries,
as shown in Figure 3. A key insight behind this traversal model is
that the input type of a Gremlin API in a query should match the
output type of its previous Gremlin API.

In this traversal model, Vertex describes the operations that
return a vertex list, e.g., Gremlin API 𝑉 () that retrieves all vertices
from a graph database can return a vertex list. Edge represents the
operations that return a list of edges, e.g., we can use 𝑔.𝑉 ().𝑜𝑢𝑡𝐸 (),

to retrieve the outgoing edges of all vertices in a graph database.
Filter is a group of filtering operations, e.g., ℎ𝑎𝑠 () and ℎ𝑎𝑠𝐿𝑎𝑏𝑒𝑙 (),
which map entities that satisfy the given filtering conditions. The
operations belonging to Filter can be assembled after Vertex and
Edge, and return a list of vertices and edges, respectively. For exam-
ple, if we assemble 𝑔.𝑉 () and ℎ𝑎𝑠 () together, the assembling query
𝑔.𝑉 ().ℎ𝑎𝑠 () also returns a vertex list. Predicate contains a group of
predicate operations, e.g., 𝑙𝑡 () that is used as a parameter of Filter.
Value describes the operations that return a value or a value list,
e.g., we can retrieve properties of vertices by 𝑔.𝑉 ().𝑣𝑎𝑙𝑢𝑒𝑠 ().

Note that in this abstract traversal model, we ignore concrete
parameters for each Gremlin API, e.g., 𝑝𝑒𝑟𝑠𝑜𝑛 in the Gremlin API
ℎ𝑎𝑠𝐿𝑎𝑏𝑒𝑙 (′𝑝𝑒𝑟𝑠𝑜𝑛′), and ignore some extra constraints, e.g., 𝑠𝑢𝑚()
can only be used with a Number type.

2.4 Gremlin Query Execution
Gremlin queries are processed by Gremlin Traversal Machine (GTM)
[54]. GTM adopts five categories of strategies [54] at Gremlin query
compiling and execution, i.e., decoration, optimization, vendor opti-
mization, finalization and verification. In these strategies, optimiza-
tion strategies [4] aim to determine the most optimal execution
plan according to the costs of accessing graph data. For example,
optimization strategies can reorder filtering operations to execute
cheaper filters first (i.e., FilterRankingStrategy) or merge oper-
ations for efficient searches (i.e., IncidentToAdjacentStrategy).
Besides, Gremlin allows GDB developers to develop their own opti-
mization strategies for efficiently executing Gremlin queries [5]. For
example, TinkerGraphCountStrategy developed by TinkerGraph
developers can optimize operations related to Gremlin API 𝑐𝑜𝑢𝑛𝑡 ().

The complexity of Gremlin query’s execution poses a major
correctness challenge for GDBs, because the combination space of
Gremlin traversals is huge. For a complex Gremlin query, incorrect
implementations and optimizations of GDBs can introduce logic
bugs. Our approach can prevent some optimization strategies from
kicking in by disassembling a Gremlin query into a sequence of
atomic graph traversals, thus detecting logic bugs in GDBs.

3 Approach
We propose Query Disassembling (QuDi), an effective approach for
automatically finding logic bugs in Gremlin-based GDBs. QuDi
solves the test oracle problem by disassembling a complex Gremlin
query (i.e., an original query) into an equivalent atomic graph tra-
versal sequence. We compare the query result of the original query
with the query result of its corresponding disassembled atomic
graph traversal sequence, and then identify the discrepancy be-
tween their query results as a logic bug.

ISSTA ’24, September 16–20, 2024, Vienna, Austria Y. Zheng, W. Dou, L. Tang, Z. Cui, Y. Gao, J. Song, L. Xu, J. Zhu, W. Wang, J. Wei, H. Zhong, and T. Huang

① Randomly generate
a graph database

g.V()

g.V().has(‘person’, ‘age’, lt(30))

g.V().hasLabel(‘person’, ‘book’)

1
3

4
2

② Randomly generate
a Gremlin query g.V().has(‘person’, ‘age’, lt(30))

 .hasLabel(‘person’, ‘book’)

③ Disassemble query Q

≠
T1

A Gremlin query Q

1 3 42

1 4

1 4

1 3 42

1 4

1 3 42

T2

T3

����

���

④ Compare

����

����

Figure 4: Approach overview.

Figure 4 illustrates the overview of our approach. We first ran-
domly generate a graph database (1○). The generated graph data-
base consists of a set of vertices and a set of edges (e.g., the graph
data shown in Figure 2). We then randomly generate Gremlin
queries based on the traversal model proposed in Figure 3 and
the graph database generated in the previous step (2○). For each
randomly generated Gremlin query 𝑄 (e.g., the query in Figure 1),
we first execute it on the target GDB to compute a result set 𝑅𝑆𝑄
(e.g., 𝑣 :{1, 2, 3, 4}). After that, we disassemble 𝑄 into a sequence of
atomic graph traversals 𝑇𝐿𝑖𝑠𝑡 (e.g., < 𝑇1,𝑇2,𝑇3 >), which has the
equivalent execution semantics with the original query 𝑄 (3○). For
each atomic graph traversal 𝑇𝑖 in 𝑇𝐿𝑖𝑠𝑡 , we construct an indepen-
dent Gremlin query for it, which takes the result set 𝑅𝑆𝑇𝑖−1 of its
previous traversal 𝑇𝑖−1 as input. We then execute 𝑇𝑖 ’s query and
compute its result set 𝑅𝑆𝑇𝑖 . After executing the last atomic graph
traversal in 𝑇𝐿𝑖𝑠𝑡 (e.g., 𝑇3), we get a final result set (e.g., 𝑣 :{1, 4}).
Finally, we compare the result set 𝑅𝑆𝑄 of the original query𝑄 with
the result set of 𝑇𝐿𝑖𝑠𝑡 (e.g., 𝑅𝑆𝑇3) (4○). A logic bug is reported for
the target GDB if these two query results are different.

By disassembling a Gremlin query 𝑄 into an equivalent atomic
graph traversal sequence 𝑇𝐿𝑖𝑠𝑡 , we can achieve the following two
targets, and effectively test individual Gremlin-based GDBs.

• For a target GDB, the combination space of atomic graph traver-
sals is huge. However, we cannot know whether an assembly of
atomic graph traversals is correct or not. QuDi can utilize atomic
graph traversals to construct a test oracle for complex Gremlin
queries, and intensely test them without human intervention.
• During sequentially executing atomic graph traversals in 𝑇𝐿𝑖𝑠𝑡 ,
we disable some complex query optimization mechanisms in a
target GDB for complex Gremlin queries and prevent optimiza-
tions from kicking in. Thus, we can construct a test oracle for
query optimization in a target GDB.

3.1 Graph Database and Query Generation
In this work, we generate random graph databases and random
Gremlin queries based on Grand [64], a differential testing frame-
work for finding bugs in Gremlin-based GDBs. Here, we explain
the graph database and query generation only for completeness.

Graph database generation. To generate a graph database, we
first randomly generate a graph schema that defines the vertex and
edge types. We denote a vertex type as < 𝑙𝑎𝑏𝑒𝑙, 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑇𝑦𝑝𝑒∗ >,
in which 𝑙𝑎𝑏𝑒𝑙 and 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑇𝑦𝑝𝑒∗ represent its label name and

property types, respectively. An edge type can be represented as
< 𝑙𝑎𝑏𝑒𝑙, 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑇𝑦𝑝𝑒∗, 𝑖𝑛𝑉𝑇𝑦𝑝𝑒, 𝑜𝑢𝑡𝑉𝑇𝑦𝑝𝑒 >, in which 𝑙𝑎𝑏𝑒𝑙 rep-
resents its label name, 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑇𝑦𝑝𝑒∗ is a set of property types,
and 𝑖𝑛𝑉𝑇𝑦𝑝𝑒 and 𝑜𝑢𝑡𝑉𝑇𝑦𝑝𝑒 denote its incoming and outgoing ver-
tex types, respectively. A property type 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑇𝑦𝑝𝑒 contains a
property name and a data type. Then, we can generate a vertex type
by generating a random label name and a set of properties, each of
which contains a random property name and a random data type.
We can randomly generate a label name and a set of property types
for an edge type, and randomly select a vertex type as its incoming
(outgoing) vertex type.

Based on the generated graph schema, we can generate a set of
vertex and edge instances, which are composed as a graph database.
To generate a vertex, we first randomly choose a vertex type, and
then randomly generate its property values. To generate an edge,
we first randomly choose an edge type, and randomly choose two
vertices whose vertex type satisfy its incoming and outgoing vertex
types, respectively. The generation of its label name and properties
is similar to the vertex generation.

We also create graph indexes for vertex (edge) properties, which
can improve the query efficiency of those indexed vertices (edges).
Specifically, we first randomly select some properties of vertices
(edges) in the generated graph schema, and then we create graph
indexes for these randomly chosen properties by using the specific
syntaxes and index mechanisms of target GDBs.

Gremlin query generation.We randomly generate Gremlin
queries based on the abstract traversal model in Figure 3. Given
a graph traversal length 𝐿, we iteratively select traversal types,
until 𝐿 is reached or a Value type is selected. Specifically, in each
iteration, we randomly select a traversal type (e.g., Filter), and
then randomly choose a Gremlin API (e.g., ℎ𝑎𝑠 ()) in the traversal
model. Its output type can be transmitted to the next iteration,
which guarantees the syntax correctness of a generated Gremlin
query. Some Gremlin APIs require parameters, e.g., property names
and property values. We can select a property name or a property
value from the graph database to reduce the probability of an empty
result set, or generate it with a Random function.

3.2 Query Disassembling
Given a generated Gremlin query, we disassemble it into a sequence
of atomic graph traversals. An atomic graph traversal can achieve
one-step traversal in the graph database and may contain one or

Testing Gremlin-Based Graph Database Systems viaQuery Disassembling ISSTA ’24, September 16–20, 2024, Vienna, Austria

Algorithm 1: Query Disassembling
Input:𝑄 (A Gremlin query)
Output:𝑇𝐿𝑖𝑠𝑡 (A sequence of atomic graph traversals)

1 𝑇𝐿𝑖𝑠𝑡 ← {}
2 𝑎𝑡𝑜𝑚𝑖𝑐𝑇 ← {}
3 𝐴𝑃𝐼𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ← getGremlinAPICalls(𝑄)
4 for 𝑖 ← 1; 𝑖 ≤ 𝐴𝑃𝐼𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒.𝑙𝑒𝑛𝑔𝑡ℎ; 𝑖 + + do
5 𝑎𝑝𝑖 ← 𝐴𝑃𝐼𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 [𝑖]
6 𝑎𝑡𝑜𝑚𝑖𝑐𝑇 .𝑎𝑑𝑑 (𝑎𝑝𝑖)
7 if 𝑎𝑝𝑖.𝑜𝑢𝑡𝑇 𝑦𝑝𝑒 = VERTEX | EDGE then
8 𝑇𝐿𝑖𝑠𝑡 .𝑎𝑑𝑑 (𝑎𝑡𝑜𝑚𝑖𝑐𝑇)
9 𝑎𝑡𝑜𝑚𝑖𝑐𝑇 ← {}

10 end
11 if 𝑎𝑡𝑜𝑚𝑖𝑐𝑇 ≠ 𝑁𝑈𝐿𝐿 then
12 𝑇𝐿𝑖𝑠𝑡 .𝑎𝑑𝑑 (𝑎𝑡𝑜𝑚𝑖𝑐𝑇)
13 return𝑇𝐿𝑖𝑠𝑡

more Gremlin APIs. For example, 𝑔.𝑉 (), ℎ𝑎𝑠 (𝑙𝑡 ()), and ℎ𝑎𝑠𝐿𝑎𝑏𝑒𝑙 ()
in Figure 4 can be treated as atomic graph traversals. Some Gremlin
APIs cannot be treated as atomic graph traversals because they
cannot be executed independently and cannot return any graph
data. For example, in Figure 4, we cannot treat 𝑙𝑡 () as an atomic
graph traversal because 𝑙𝑡 () is only used for filtering conditions
and acts as a parameter in ℎ𝑎𝑠 ().

In our approach, we refer to an atomic graph traversal as a group
of Gremlin API calls, which return a result set with an output type of
Vertex or Edge (e.g.,𝑔.𝑉 () and𝑔.𝐸 () in Figure 3).We further require
that, if an atomic graph traversal returns a result set with an output
type of Vertex or Edge, any of its sub-sequence of Gremlin API calls
cannot return a result set with an output type of Vertex or Edge.
Take 𝑔.𝑉 ().ℎ𝑎𝑠 (′𝑝𝑒𝑟𝑠𝑜𝑛′,′ 𝑎𝑔𝑒′, 𝑙𝑡 (30)) as an example. We cannot
treat this query as an atomic graph traversal, since both 𝑔.𝑉 ()
and ℎ𝑎𝑠 (′𝑝𝑒𝑟𝑠𝑜𝑛′,′ 𝑎𝑔𝑒′, 𝑙𝑡 (30)) can return a result set of Vertex.
Thus, we will disassemble this into two atomic graph traversals, i.e.,
𝑔.𝑉 () and ℎ𝑎𝑠 (′𝑝𝑒𝑟𝑠𝑜𝑛′,′ 𝑎𝑔𝑒′, 𝑙𝑡 (30)). Note that we also consider
all the Gremlin API calls at the end of a Gremlin query to compute
Value for Vertex or Edge as the last graph traversal. For example,
we treat 𝑣𝑎𝑙𝑢𝑒𝑠 (′𝑎𝑔𝑒′).𝑠𝑢𝑚() as the last graph traversal for query
𝑔.𝑉 ().𝑣𝑎𝑙𝑢𝑒𝑠 (′𝑎𝑔𝑒′).𝑠𝑢𝑚().

Algorithm 1 illustrates howwe disassemble a Gremlin query into
a sequence of atomic graph traversals. Initially, we set an atomic
graph traversal 𝑎𝑡𝑜𝑚𝑖𝑐𝑇 to an empty list (Line 2). We then extract
Gremlin API calls of the given Gremlin query 𝑄 from its traversal
steps in turn (Line 3). For each Gremlin API call 𝑎𝑝𝑖 , we add it
to 𝑎𝑡𝑜𝑚𝑖𝑐𝑇 (Line 6), and then check whether we can disassemble
after it (Line 7-9). Specifically, we check whether the output type
𝑜𝑢𝑡𝑇𝑦𝑝𝑒 of 𝑎𝑝𝑖 is Vertex or Edge. If yes, we get an atomic graph
traversal, and add 𝑎𝑡𝑜𝑚𝑖𝑐𝑇 to the traversal list 𝑇𝐿𝑖𝑠𝑡 , and then
continue to find a new atomic graph traversal. After processing all
the Gremlin API calls in𝑄 , we will add 𝑎𝑡𝑜𝑚𝑖𝑐𝑇 to𝑇𝐿𝑖𝑠𝑡 if 𝑎𝑡𝑜𝑚𝑖𝑐𝑇

is not empty (Line 11-12). Finally, we obtain the disassembled atomic
graph traversal sequence 𝑇𝐿𝑖𝑠𝑡 and return it (Line 13).

According to Algorithm 1, Gremlin APIs in Vertex in Figure 3
can return a vertex list, and thus can be treated as atomic graph
traversals. For example, Gremlin API 𝑜𝑢𝑡𝑉 () returns a list of outgo-
ing vertices, and thus can be treated as an atomic graph traversal.
Similarly, Gremlin APIs in Edge in Figure 3 can also be treated as
atomic graph traversals. Gremlin APIs in Filter can also be treated

1 g.V(); -- v:{1,2,3,4}
2 g.V(1,2,3,4).has('person ','age',lt(30)); -- v:{1,4}
3 g.V(1,4).hasLabel('person ','book'); -- v:{1,4}

Figure 5: The execution of the disassembled atomic graph
traversals in Figure 4 using the parameter passing strategy.

as atomic graph traversals, because they can maintain the vertex
or edge type of its previous graph traversal. For example, we can
treat ℎ𝑎𝑠𝐿𝑎𝑏𝑒𝑙 () as an atomic graph traversal.

Note that it is unnecessary to disassemble Gremlin APIs in Value.
For example, for a query 𝑣𝑎𝑙𝑢𝑒𝑠 ().𝑐𝑜𝑢𝑛𝑡 (), we could not disassemble
it into 𝑣𝑎𝑙𝑢𝑒𝑠 () and 𝑐𝑜𝑢𝑛𝑡 (). Further, we do not disassemble Gremlin
APIs in Predicate because they cannot return any vertices or edges,
and always act as parameters for filtering operations.

3.3 Atomic Traversal Execution
For each atomic graph traversal 𝑇𝑖 in the disassembled graph tra-
versal sequence 𝑇𝐿𝑖𝑠𝑡 , we construct a Gremlin query 𝑄𝑖 for it to
compute its intermediate result 𝑅𝑆𝑇𝑖 . Here, we refer to the con-
structed query as a disassembled query. To construct and execute
the disassembled query 𝑄𝑖 for 𝑇𝑖 , we need to firstly retrieve the
intermediate result set 𝑅𝑆𝑇𝑖−1 of its previous traversal𝑇𝑖−1 as input.
The intermediate result 𝑅𝑆𝑇𝑖−1 can be a list of vertices or edges.
Note that for the start traversals 𝑔.𝑉 () and 𝑔.𝐸 (), we do not need to
construct additional queries for them. To correctly and effectively
store and use these intermediate results, we come up with three
execution strategies, i.e., parameter passing strategy, temporary ID
table strategy, and barrier strategy. These three strategies execute
the disassembled query using different Gremlin features, and can
potentially find more logic bugs. Our experiment in Section 4.2.3
shows that these three strategies can complement each other.

3.3.1 Parameter Passing Strategy. In this strategy, we store the
intermediate query result of an atomic graph traversal 𝑇𝑖−1 into
an ID list 𝑖𝑑𝐿𝑖𝑠𝑡 , which is a list of vertex IDs or edge IDs. When
we compute the graph traversal 𝑇𝑖 , we retrieve the intermediate
result from 𝑖𝑑𝐿𝑖𝑠𝑡 , and pass it as a parameter of the Gremlin API
𝑉 (𝑖𝑑𝐿𝑖𝑠𝑡) (obtaining vertices with a vertex ID list) or 𝐸 (𝑖𝑑𝐿𝑖𝑠𝑡)
(obtaining edges with an edge ID list) according to the output type
of𝑇𝑖−1. For example, as shown in Figure 5, we store the intermediate
result of the second atomic graph traversal to a vertex list {1, 4}
(Line 2). When we execute the third atomic graph traversal, we
first retrieve the vertex list {1, 4} and then take it as the parameter
of 𝑉 (), i.e., 𝑔.𝑉 (1, 4). Finally, we construct a query by attaching
the third atomic graph traversal ℎ𝑎𝑠𝐿𝑎𝑏𝑒𝑙 (′𝑝𝑒𝑟𝑠𝑜𝑛′,′ 𝑏𝑜𝑜𝑘′) behind
𝑔.𝑉 (1, 4) to compute the final result (Line 3).

Note that when a graph traversal returns an empty list, we cannot
pass an ID list to API 𝑉 () or 𝐸 (). In this case, we construct a query
that returns an empty list for 𝑉 () or 𝐸 (). For example, we can
generate a specific ID that does not exist in the graph database so
that the constructed query cannot retrieve any vertex (or edge).

The parameter passing strategy can effectively disable complex
query assembly and optimizations, so that we can detect logic bugs
efficiently. But this strategy is limited by the size of the parameters
in API𝑉 () and 𝐸 (), so that a large graph database is not suitable for
this strategy. For example, since JanusGraph limits the size of ID list
in 𝑉 () or 𝐸 () to 255, an exception will be thrown if more than 255

ISSTA ’24, September 16–20, 2024, Vienna, Austria Y. Zheng, W. Dou, L. Tang, Z. Cui, Y. Gao, J. Song, L. Xu, J. Zhu, W. Wang, J. Wei, H. Zhong, and T. Huang

1 // put the result v:{1,4} into a temporary table
2 g.addV('IDs').property('id' ,1)
3 g.addV('IDs').property('id' ,4)
4
5 // execute the third atomic graph traversal
6 g.V().hasLabel('IDs').values('id').as('vList ')
7 .V().as('V')
8 .id().as('V_ID')
9 .where('vList ',P.eq('V_ID')).select('V')
10 .hasLabel('person ','book') -- v:{1,4}
11
12 // drop the temporary ID table
13 g.V().hasLabel('IDs').drop()

Figure 6: The execution of the atomic graph traversal 𝑇3 in
Figure 4 using the temporary ID table strategy.

vertices or edges are returned for an atomic graph traversal. Fortu-
nately, we find that all the 25 detected logic bugs in our experiment
can also be triggered with a small number of graph data, i.e., at most
three vertices and two edges in a graph database. This indicates
that the limitation about the size of parameters (255) should not
affect the effectiveness of the parameter passing strategy.

3.3.2 Temporary ID Table Strategy. In this strategy, we store the
intermediate result to a temporary table. Specifically, we first extract
an ID list 𝑖𝑑𝐿𝑖𝑠𝑡 from the intermediate result 𝑅𝑆𝑇𝑖−1 of 𝑇𝑖−1, and
then store each ID in 𝑖𝑑𝐿𝑖𝑠𝑡 to a newly created vertex in the graph
database. Thus, we can get a list of newly created vertices 𝑣𝐿𝑖𝑠𝑡 to
store the ID list 𝑖𝑑𝐿𝑖𝑠𝑡 of 𝑅𝑆𝑇𝑖−1 . Specifically, each vertex in 𝑣𝐿𝑖𝑠𝑡

has a label ‘IDs’ with a property 𝑖𝑑 to store an ID in 𝑖𝑑𝐿𝑖𝑠𝑡 . When
we execute the graph traversal 𝑇𝑖 , we construct a query to retrieve
the result set of 𝑇𝑖−1 with the help of 𝑣𝐿𝑖𝑠𝑡 and then execute 𝑇𝑖 .
After we consume these vertices, we will delete them.

As shown in Figure 6, we take the execution of the third atomic
graph traversal ℎ𝑎𝑠𝐿𝑎𝑏𝑒𝑙 (′𝑝𝑒𝑟𝑠𝑜𝑛′,′ 𝑏𝑜𝑜𝑘′) (𝑇3 in Figure 4) as an
example. After we obtain the result set 𝑣 :{1, 4} of the second atomic
graph traversal 𝑇2, we store their vertex IDs into a table with label
‘IDs’ (Line 2-3). Note that label ‘IDs’ can only be used in this part,
and cannot be used in graph database generation and Gremlin query
generation (Section 3.1). Next, we first query the vertex list 𝑣𝐿𝑖𝑠𝑡
(Line 6), and then retrieve vertices whose IDs are in the vertex list
𝑣𝐿𝑖𝑠𝑡 from all vertices in the graph database (Line 7-9). After that,
we execute 𝑇3 to compute its result set 𝑣 :{1, 4} (Line 10). Finally, we
remove the created vertices (Line 13).

Since the graph database generator does not generate vertices
or edges whose label is ‘IDs’ to a randomly generated database, the
newly created vertices do not affect the correctness of our approach.
Although we construct a complex Gremlin query to retrieve the
intermediate results, we can still break down the assembly of the
original Gremlin query.

This strategy can avoid the disadvantages of parameter passing
strategy, e.g., the limited size of the parameters in Gremlin API
𝑉 () and 𝐸 (). Furthermore, the idea of storing the intermediate
result to a temporary table can be commonly used in other database
systems, e.g., it can be extended to disassemble SQL queries in
relational database systems (Section 5). However, for this strategy,
we must spend more time to test target GDBs, because it needs
more operations to store or drop the intermediate results in the
graph database. Besides, since we introduce extra atomic graph
traversals to retrieve and use the intermediate results, bugs related
to these traversals might be missed.

1 g.V().barrier ().has('person ','age',lt(30)).barrier ().
hasLabel('person ','book'); -- v:{1,4}

Figure 7: The execution of the disassembled atomic graph
traversals in Figure 4 using the barrier strategy.

3.3.3 Barrier Strategy. The core insight of this strategy is that the
Gremlin API𝑏𝑎𝑟𝑟𝑖𝑒𝑟 () can turn the lazy pipeline of a Gremlin query
into a bulk-synchronous pipeline. This indicates that the graph
traversals prior to a 𝑏𝑎𝑟𝑟𝑖𝑒𝑟 () operation need to be executed before
moving onto the graph traversals after the 𝑏𝑎𝑟𝑟𝑖𝑒𝑟 () operation.
Therefore, when we append a 𝑏𝑎𝑟𝑟𝑖𝑒𝑟 () operation after atomic
graph traversal 𝑇𝑖−1, the assembly of 𝑇𝑖−1 and 𝑇𝑖 in the original
Gremlin query can be disabled by the𝑏𝑎𝑟𝑟𝑖𝑒𝑟 () operation. Note that
we do not need to append a𝑏𝑎𝑟𝑟𝑖𝑒𝑟 () operation after the last atomic
graph traversal. For example, in Figure 7, we first append 𝑏𝑎𝑟𝑟𝑖𝑒𝑟 ()
operations after the first and second atomic graph traversals to
construct the disassembled query, and then execute it to compute
the result set of the disassembled atomic graph traversal sequence.

Although this strategy can disable Gremlin API assembly and
prevent some optimizations from kicking in, it introduces bulk op-
eration and bulk optimization (when repeatedly touching many
of the same elements, 𝑏𝑎𝑟𝑟𝑖𝑒𝑟 () operations can only execute this
element once) itself. As such, this strategy cannot disable more com-
plex query assembly and optimizations as the other two execution
strategies do, so that some logic bugs may be omitted. However,
we find that one bug detected in our experiment by this strategy
cannot be detected by the other two strategies. This indicates that
the barrier strategy can complement the other two strategies.

4 Evaluation
We implement QuDi on Grand [64] with around 1000 lines of Java
code. Furthermore, we add some general GremlinAPIs, e.g., 𝑠𝑎𝑚𝑝𝑙𝑒 ()
and 𝑏𝑎𝑟𝑟𝑖𝑒𝑟 (), to the traversal model used in Grand and add some
GDB-specific features, e.g., creating graph indexes for properties.
We modify the Gremlin query generation algorithm used in Grand
by appending Gremlin traversal steps instead of String values to a
Gremlin traversal source 𝑔. Therefore, we can easily disassemble
Gremlin queries based on the assembly Gremlin traversal steps.

To evaluate the effectiveness of our approach, we apply QuDi on
six representative Gremlin-based GDBs and investigate the follow-
ing three research questions:
• RQ1: How effective is QuDi in detecting logic bugs in real-world
GDBs?
• RQ2: How do the proposed three execution strategies in QuDi
perform in detecting logic bugs?
• RQ3: How does QuDi compare with the existing state-of-the-art
approaches in bug detection capability?
We first introduce our experimental methodology (Section 4.1).

Then, we elaborate an overview of found bugs (Section 4.2) and
comparisons to existing approaches (Section 4.3). Finally, we discuss
some interesting bugs we discovered in detail (Section 4.4).

4.1 Methodology
Target GDBs.We evaluate QuDi on six widely-used Gremlin-based
GDBs, i.e., Neo4j [12], OrientDB [16], JanusGraph [8], HugeGraph
[6], TinkerGraph [22], and ArcadeDB [14]. Table 1 shows their

Testing Gremlin-Based Graph Database Systems viaQuery Disassembling ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 1: Target GDBs

GDB Ranking GitHub Stars Initial Release
Neo4j 1 12.4k 2007
OrientDB 6 4.7k 2010
JanusGraph 12 5.1k 2017
HugeGraph 33 2.5k 2018
TinkerGraph 34 1.9k 2009
ArcadeDB 37 434 2021

basic information, including DB-Engines Ranking of GDBs [3],
GitHub stars, and initial release date, which indicate that they are
all important and popular GDBs.

Among the six GDBs, four (i.e., Neo4j, JanusGraph, HugeGraph,
and TinkerGraph) only support the graph model, and the remaining
two target GDBs, i.e., OrientDB and ArcadeDB, support multiple
data models, e.g., document, graph, and key-value models. Fur-
thermore, these GDBs support Gremlin APIs in different ways.
We access Neo4j through the Neo4j-Gremlin plugin [13], which is
provided by Apache TinkerPop1. JanusGraph, HugeGraph, and Tin-
kerGraph encapsulate a Gremlin server in their own servers. They
apply some special optimizations and can also natively use Grem-
lin to query graph data. OrientDB and ArcadeDB implement their
own TinkerPop3 interfaces, so that they can use Gremlin to query
graph data. Thus, the six GDBs used in our experiments can cover
different kinds of Gremlin-based GDBs and are representative.

We test the latest release versions of these GDBs when we
start this work, i.e., Neo4j 3.4.11 (with the latest release version
Neo4j-Gremlin 3.6.1), OrientDB 3.2.10, JanusGraph 0.6.2, Huge-
Graph 0.12.0, TinkerGraph 3.6.1, and ArcadeDB 22.8.1.

Testing methodology. We run QuDi to test each target GDB
with each execution strategy (i.e., parameter passing strategy, tem-
porary ID table strategy, and barrier strategy) in 10 testing rounds.
In each testing round, a graph database with at most 50 vertices and
100 edges is randomly created for a target GDB, and 1,000 Gremlin
queries are randomly generated as original queries. Note that our
approach can be applied to find bugs involving large graph data, e.g.,
5,000 vertices and 10,000 edges. However, the parameter passing
strategy cannot be used for large graph data (e.g., more than 255
vertices or edges). Thus, we only generate at most 50 vertices and
100 edges to make sure that all of our three execution strategies
can work. All the numbers (i.e., 50 vertices, 100 edges, and 1,000
Gremlin queries) are configurable.

Simplify test cases. For each reported logic bug, we manually
reduce the test case to a smaller one so that we can easily understand
and diagnose the bug. Themanual reduction is conducted as follows.
(1) We remove the last unchecked traversal step in the original
query, and check whether the same bug can be still triggered by
the simpler test case. (2) If the bug can still be triggered, we have
obtained a simpler test case. We will continue step (1) on the simpler
test case for further reduction. (3) If the bug cannot be triggered,
we will continue step (1) on the original test case. (4) We continue
the above steps until we find a manageable and simpler test case.

Deduplicate test cases. For a simplified test case, we manually
analyze its query pattern and bug consequences, and check whether
it occurs in previous test cases. If yes, we consider it as a duplicate

1We can test Neo4j and the Neo4j-Gremlin plugin at the same time.

test case and discard it. Otherwise, we further check whether its
possible root cause occurs in previous test cases. If yes, we also con-
sider it as a duplicate test case. For example, we detect an issue that
throws an exception 𝑐𝑜𝑚.𝑏𝑎𝑖𝑑𝑢.ℎ𝑢𝑔𝑒𝑔𝑟𝑎𝑝ℎ.𝑏𝑎𝑐𝑘𝑒𝑛𝑑.𝑖𝑑.𝐼𝑑 when ex-
ecuting the simplified query 𝑔.𝑉 ().𝑜𝑢𝑡𝐸 (𝑒𝑙1, 𝑒𝑙2) .ℎ𝑎𝑠 (′𝑒𝑝1′). We
analyze its root cause by trying to find which query pattern trig-
gers this exception. In this example, we find that ℎ𝑎𝑠 () cannot be
queried after 𝑜𝑢𝑡𝐸 () with multiple labels in 𝑜𝑢𝑡𝐸 (), the graph pat-
tern 𝑜𝑢𝑡𝐸 (𝑒𝑙1, 𝑒𝑙2).ℎ𝑎𝑠 (′𝑒𝑝1′) triggers the exception. After that, if
we find a simplified test case that contains 𝑜𝑢𝑡𝐸 (𝑎, 𝑏).ℎ𝑎𝑠 () and
throws an exception 𝑐𝑜𝑚.𝑏𝑎𝑖𝑑𝑢.ℎ𝑢𝑔𝑒𝑔𝑟𝑎𝑝ℎ.𝑏𝑎𝑐𝑘𝑒𝑛𝑑.𝑖𝑑.𝐼𝑑 , then we
consider it as a duplicate. Finally, we submit unique issues to the
corresponding community on GitHub.

4.2 Detected Bugs
4.2.1 Bug Overview. We obtain 3,047 bug reports in the six tested
GDBs, which may be potential logic bugs. Specifically, there are 8,
20, 265, 2490, 87, and 177 bug reports in Neo4j, OrientDB, Janus-
Graph, HugeGraph, TinkerGraph, and ArcadeDB, respectively. We
carefully reproduce and analyze test cases in these 3,047 bug reports,
and deduplicate these test cases according to their query patterns
or root causes (Section 4.1). Finally, we obtain 25 unique real-world
logic bugs in the six target Gremlin-based GDBs. Table 2 shows the
overall bug statistics.

At the time of writing this paper, out of the 25 detected bugs,
17 logic bugs have been confirmed by developers. Among these 17
confirmed bugs, 10 logic bugs are classified as previously-unknown
bugs and 7 logic bugs are considered as duplicate to existing bug
reports. For the 7 duplicate bugs, we generate different test cases
that are different from ones in the existing bug reports. For now, 8
out of the 17 confirmed bugs have been fixed by GDB developers.
2 logic bugs are considered as intended by GDB developers. The
remaining 6 logic bugs have not been confirmed yet.

Note that inNeo4j, we detect one logic bug. However, we carefully
investigate it and find that this bug is caused by the Neo4j-Gremlin
plugin instead of Neo4j itself. We further find that this bug is similar
to the bug report we have submitted to the TinkerPop community
earlier. Therefore, we do not generate a new bug report for it and
do not count it in Table 2.

Intended bugs. One intended bug OrientDB#9885 is introduced
because OrientDB forgets to throw an exception when sorting
vertices or edges for a not existing property. Although OrientDB
developers explained that OrientDB can return 𝑁𝑈𝐿𝐿 when access-
ing a not existing property, we still think it is a true bug because
OrientDB sometimes does not return 𝑁𝑈𝐿𝐿. In another intended
bug HugeGraph#1966, HugeGraph returns an incorrect query re-
sult when querying vertices or edges by filtering properties using
𝑛𝑜𝑡 (𝑒𝑞()). HugeGraph developers explained that HugeGraph does
not support not-eq index queries now. Nevertheless, HugeGraph
developers still plan to improve it in the future.

QuDi can effectively detect logic bugs, i.e., 10 out of 25 detected
logic bugs have been confirmed as previously-unknown bugs.

4.2.2 Bug Analysis. We analyze logic bugs detected by QuDi in the
following two aspects, i.e., bug categories and bug consequences,

ISSTA ’24, September 16–20, 2024, Vienna, Austria Y. Zheng, W. Dou, L. Tang, Z. Cui, Y. Gao, J. Song, L. Xu, J. Zhu, W. Wang, J. Wei, H. Zhong, and T. Huang

Table 2: Logic Bugs Detected by QuDi

Detected Bugs Execution StrategiesGDB Detected New Duplicate Intended Unconfirmed Fixed ParaPass TempID Barrier
Neo4j 0 0 0 0 0 0 0 0 0
OrientDB 3 1 1 1 0 1 2 3 3
JanusGraph 3 2 0 0 1 0 3 2 1
HugeGraph 16 6 4 1 5 4 15 12 11
TinkerGraph 1 0 1 0 0 1 1 1 0
ArcadeDB 2 1 1 0 0 2 2 2 2
Total 25 10 7 2 6 8 23 20 17

to give an intuition of whether these logic bugs can seriously affect
the reliability of GDBs.

Bug categories. Among these 17 confirmed logic bugs, 6 logic
bugs are caused by incorrect implementations of atomic graph tra-
versals, in which the related atomic graph traversals return incor-
rect results. For example, in HugeGraph#1946, HugeGraph cannot
support 𝐸 (𝑖𝑑𝐿𝑖𝑠𝑡) correctly when its parameter contains duplicate
edge IDs. 11 bugs are caused by incorrect implementations of the
assembly of atomic graph traversals (e.g., Figure 1). In these bugs,
all their used atomic graph traversals can return correct results,
but the assembly of the used atomic graph traversals returns an
incorrect result. Among these 11 bugs, 3 bugs are related to the
incorrect query optimizations of related assembly of atomic graph
traversals. For example, in TinkerGraph#2812, TinkerGraph returns
a wrong result for 𝑜𝑟𝑑𝑒𝑟 ().𝑏𝑦 (′𝑝𝑟𝑜𝑝′).𝑐𝑜𝑢𝑛𝑡 () because its optimiza-
tion mechanisms cannot properly process 𝑐𝑜𝑢𝑛𝑡 () operation.

Note that we can find logic bugs caused by the incorrect im-
plementations and optimizations because QuDi can prevent some
optimization strategies from kicking in by disassembling a complex
Gremlin query into atomic graph traversals. Furthermore, we can
also potentially detect logic bugs caused by incorrect implemen-
tations in atomic graph traversals. If an atomic graph traversal is
incorrectly implemented, but a Gremlin query that contains this
atomic graph traversal returns a correct result, QuDi can also iden-
tify the inconsistency and detect a logic bug.

Bug consequences. We summarize the 25 logic bugs into three
categories according to their bug consequences, i.e., incorrect query
result, lacking exception, and unexpected exception2. Table 3 shows
the detailed information. Specifically, incorrect query result means
the two compared results are not equal, and one of them is incorrect.
9 bugs belong to this category, including 4 previously-unknown
bugs (one has been fixed), 3 duplicate bugs (two of them have been
fixed) and two unconfirmed bugs. Lacking exception means that a
Gremlin query should throw an exception (e.g., NumberFormatEx-
ception) but returns a query result instead. 5 bugs are related to
it, including 2 previously-unknown bugs (one has been fixed), one
intended bug, and two unconfirmed bugs. These 14 bugs that cause
incorrect query result and lacking exception can easily go unnoticed
by developers because no exception or warning is thrown.

The remaining 11 bugs belong to unexpected exception, each
of which returns an unexpected exception for a valid query, but
they should not. In this case, users cannot get their expected re-
sults correctly. 8 out of 11 bugs have been confirmed, including
4 previously-unknown bugs (two of them have been fixed). Note

2We consider lacking exception and unexpected exception as logic bugs since they can
return the incorrect results without crashing the GDBs.

Table 3: Bug Consequences

GDB Incorrect Lacking Unexpected
Query Result Exception Exception

Neo4j 0 0 0
OrientDB 0 1 2
JanusGraph 2 0 1
HugeGraph 4 4 8
TinkerGraph 1 0 0
ArcadeDB 2 0 0
Total 9 5 11

that all these bugs return commonly-thrown exceptions, e.g., Il-
legalArgumentException, NumberFormatException, NoIndexEx-
ception, and IllegalStateException, which can also be returned by
invalid queries. Thus, these bugs are also easily ignored by GDB
developers and omitted by the existing GDB testing techniques.

Logic bugs detected by QuDi can lead to incorrect query results,
lacking exceptions, and unexpected exceptions, which can easily
go unnoticed by GDB developers.

4.2.3 Execution Strategies Comparison. We design three execution
strategies, i.e., parameter passing strategy (ParaPass for short),
temporary ID table strategy (TempID for short), and barrier strategy
(Barrier for short) for storing and using intermediate results of a
sequence of atomic graph traversals, aiming at finding more logic
bugs using different Gremlin features.

We count the logic bugs found by different execution strategies
in the six target GDBs. Specifically, once we find a logic bug using
an execution strategy, we will manually analyze whether the other
two execution strategies can also detect it with this bug report. As
shown in Table 2, almost all (23/25) bugs can be found by ParaPass,
most (20/25) bugs can be detected by TempID, and 17 bugs can be
found by Barrier. ParaPass and TempID can find more bugs than
Barrier because they can disable atomic graph traversal assembly
more thoroughly by storing vertex (edge) ID list into an array list
or a temporary table. However, Barrier does not really store these
intermediate results, and executes each atomic graph traversal by
appending a 𝑏𝑎𝑟𝑟𝑖𝑒𝑟 () operation after this atomic graph traversal,
which can affect the bug detection capability of Barrier.

We further analyze the necessary of these three execution strate-
gies. As shown in Figure 8, according to the special Gremlin features,
ParaPass and Barrier can find four and one new bugs that other
two execution strategies cannot detect, respectively. Specifically,
four bugs only detected by ParaPass are all triggered by passing the
intermediate results as a parameter of the Gremlin API𝑉 (𝑖𝑑𝐿𝑖𝑠𝑡) or
𝐸 (𝑖𝑑𝐿𝑖𝑠𝑡), which cannot be used in other two execution strategies.
One bug only detected by Barrier is triggered by the feature of

Testing Gremlin-Based Graph Database Systems viaQuery Disassembling ISSTA ’24, September 16–20, 2024, Vienna, Austria

𝑃𝑎𝑟𝑎𝑃𝑎𝑠𝑠 𝐵𝑎𝑟𝑟𝑖𝑒𝑟

𝑇𝑒𝑚𝑝𝐼𝐷

4 1

0

0

4 115

Figure 8: Venn diagram of the logic bugs detected by our three
execution strategies.

API 𝑏𝑎𝑟𝑟𝑖𝑒𝑟 (). TempID can find some logic bugs that are common to
ParaPass and Barrier. However, TempID is a general strategy that
can be potentially applied to test other database systems (Section 5),
and can also work with large graph data. Overall, since these three
execution strategies construct and execute the disassembled query
using different Gremlin features, they have different bug detection
capabilities, and thus do not detect exactly the same bugs. Thus,
our three execution strategies can complement each other.

Our three execution strategies can cover different Gremlin features
and complement each other, thus detecting more logic bugs.

4.3 Comparing with Existing Approaches
Four related approaches, i.e., Grand [64], GDsmith [39], RD2 [62],
and GDBMeter [42], can find bugs in GDBs. Specifically, Grand,
GDsmith, and RD2 utilize differential testing [49] to reveal discrep-
ancies among multiple target GDBs. GDBMeter utilizes Ternary
Logic Partitioning (TLP), an invariant of query partitioning [52],
to reveal logic bugs in a target GDB. Therefore, we compare QuDi
with differential testing and query partitioning. Note that we cannot
compare QuDi with relational database testing tools, e.g., SQLancer
[51–53], since QuDi and SQLancer target different types of database
systems, which utilize different query languages (Gremlin vs. SQL)
and data models (graph model vs. relational model).

Comparison with differential testing. Differential testing
(e.g., Grand) requires more than one target GDB as input. If a Grem-
lin feature is not supported by all target GDBs, differential testing
will not be able to apply on this feature. Thus, differential testing
can only be used to test common features in the target GDBs. We
can encounter the following cases in differential testing.
• C1: At least two GDBs can return inconsistent results, then
differential testing reports a bug.
• C2: All GDBs return the same wrong results, then differential
testing can miss a bug.
• C3: All GDBs return the same results. However, some GDBs are
expected to return inconsistent results according to their special
semantics. In this case, differential testing can miss a bug.
• C4: At least two GDBs can return inconsistent results. However,
the inconsistency is caused by target GDBs’ special semantics.
In this case, differential testing can report a false positive.
Based on the above discussion, QuDi has the following advan-

tages over differential testing. (1) QuDi can detect bugs based on
an individual GDB. (2) QuDi can test Gremlin features that are
supported by only one GDB. (3) QuDi is used to detect internal

inconsistencies in an individual GDB, and will not encounter C3
and C4.

To compare QuDiwith differential testing, we first verify whether
differential testing in Grand can detect the 25 logic bugs detected by
QuDi. We run each test case in our 25 bug reports on our six target
GDBs and verify whether their query results are the same. Any
discrepancy among their query results will be considered as a logic
bug detected by Grand. We find that, Grand can detect 19 logic bugs
that QuDi find, but cannot detect the remaining 6 bugs. Besides,
Grand reports 2 false positives because the buggy GDBs return
different query results from the other GDBs but their behaviors are
expected due to the GDBs’ special semantics.

Note that it is reasonable that Grand can detect many logic bugs
that QuDi can detect, since Grand use multiple GDBs as reference
implementations. It is interesting to know how effective QuDi is in
revealing logic bugs detected by Grand. We further verify whether
QuDi can detect the 21 logic bugs reported by Grand. Specifically,
for an original Gremlin query that triggers a bug in these 21 bug
reports, we disassemble it into atomic graph traversals and verify
whether they can compute different query results as the original
query. If yes, we consider that QuDi can detect the logic bug. We
find that, QuDi can find 16 (76%) logic bugs detected by Grand. QuDi
misses the remaining 5 bugs because their original queries and the
corresponding disassembled queries return the same wrong results.
This result indicates that QuDi has the capability to detect most logic
bugs detected by Grand without suffering from Grand’s drawbacks,
e.g., multiple GDBs as input and false positives.

Comparison with query partitioning. In query partitioning
(e.g., GDBMeter), a given query 𝑄 can derive multiple disjoint sub-
queries (e.g., 𝑄

′
𝑝=𝑇𝑅𝑈𝐸

, 𝑄
′
𝑝=𝐹𝐴𝐿𝑆𝐸

, and 𝑄
′
𝑝 𝑖𝑠 𝑁𝑈𝐿𝐿

based on a ran-
dom predicate 𝑝 in TLP). These individual partitions are composed
to obtain a result set 𝑅𝑆𝑄 ′ , which should be equal to 𝑅𝑆𝑄 . How-
ever, query partitioning cannot prevent GDB optimizations from
kicking in and reveal assembly issues in GDBs, so that it can hardly
detect logic bugs that are caused by incorrect implementations and
optimizations of the assembly of atomic graph traversals, and our
query disassembling is complementary to query partitioning.

We first verify whether query partitioning in GDBMeter can
detect the 25 logic bugs detected by QuDi. For each test case in our
25 bug reports, we try to construct disjoint sub-queries according
to the TLP oracle and check whether these disjoint sub-queries can
report an inconsistency. We find that, only 6 bugs detected by QuDi
can be found by GDBMeter theoretically. Among these six bugs, 5
bugs are identified by unexpected exceptions in disjoint sub-queries
and the remaining one is identified by incorrect query results. The
remaining 19 bugs could not be detected by GDBMeter because the
original queries in these test cases can compute the same wrong
query results as the union query results of their disjoint sub-queries.

We further verify whether QuDi can detect the 3 logic bugs
reported by GDBMeter in JanusGraph, which adopt Gremlin as the
query language.We ignore the other 36 bugs reported by GDBMeter
since their test cases use Cypher queries, which we do not support
for now. We try to run each test case in these 3 bug reports via QuDi,
and check whether QuDi can reveal them. However, 2 of 3 bugs are
internal errors that are triggered by query generation instead of
the test oracles (e.g., query partitioning and query disassembling).

ISSTA ’24, September 16–20, 2024, Vienna, Austria Y. Zheng, W. Dou, L. Tang, Z. Cui, Y. Gao, J. Song, L. Xu, J. Zhu, W. Wang, J. Wei, H. Zhong, and T. Huang

1 v1 = g.addV('vL').next();
2 v2 = g.addV('vL').next();
3 e1 = g.addE('eL').from(v1).to(v2).next();
4 g.E(e1).property('p', new Float (0.94461));
5
6 // original query
7 g.E().has('p', 0.94461); -- e:{1} ✘
8
9 // disassembled queries
10 g.E(); -- e:{1}
11 g.E(1).has('p', 0.94461); -- {} ✔

Figure 9: JanusGraph inconsistently retrieves properties
without explicit data type in JanusGraph#3200.

1 v1 = g.addV('vL').property('p0', 1).next();
2 v2 = g.addV('vL').property('p1', 2).next();
3
4 // original query
5 g.V().order().by('p0'); -- {The property does not exist as

the key has no associated value for the provided
element v[2]:p0.} ✘

6
7 // disassembled queries
8 g.V(); -- v:{1, 2}
9 g.V(1,2).order().by('p0'); -- v:{1,2} ✘

Figure 10: JanusGraph incorrectly sorts vertices with proper-
ties in JanusGraph#3216 and JanusGraph#3269.

Since we cannot reproduce the remaining one bug, we do not know
whether QuDi can reveal it.

QuDi can find new bugs that existing approaches cannot detect.
QuDi also has the capability to detect most (76%) logic bugs de-
tected by Grand without suffering from Grand’s drawbacks.

4.4 Selected Interesting Bugs
We explain some interesting bugs found by QuDi to give an intuition
of what kinds of bugs can be found via QuDi.

Inconsistent handling of data types. JanusGraph suffers from
inconsistent behaviors when querying properties without giving
explicit data types. As shown in Figure 9, we first create two vertices
and one edge (Line 1-3). We then add a property 𝑝 with a value
0.94461 whose type is 𝐹𝑙𝑜𝑎𝑡 to edge 𝑒:1 (Line 4). When we query
edges by filtering 𝑝 = 0.94461, we can retrieve edge 𝑒:1 with the
original query of Line 7. However, when we disassemble it into two
atomic graph traversals 𝑔.𝐸 () and ℎ𝑎𝑠 (′𝑝′, 0.94461) (Line 10-11), an
empty set is returned, which is inconsistent with the result of the
original query. JanusGraph developers have confirmed this bug and
are trying to investigate the root cause of this issue.

Incorrect handling of order() operation.We find two bugs
where JanusGraph mistakenly sorts vertices or edges with prop-
erties using 𝑜𝑟𝑑𝑒𝑟 ().𝑏𝑦 (). As shown in Figure 10, two vertices 𝑣 :1
and 𝑣 :2 are created with property 𝑝0 and 𝑝1, respectively (Line 1-2).
When we sort vertices with property 𝑝0 (Line 5), an exception is
thrown because vertex 𝑣 :2 does not have a property 𝑝0. But we can
get a result set 𝑣 :{1, 2} for the disassembled query (Line 9). For the
bug triggered by the original query, JanusGraph developers think
they should filter vertices based on property 𝑝0 instead of throw-
ing an exception. The disassembled query triggers another bug, in
which the expected result is 𝑣 :{1} instead of 𝑣 :{1, 2}. Although this
bug has not been confirmed, we still believe it is a true bug.

1 v1 = new Vertex('vL');
2 v2 = new Vertex('vL');
3 v3 = new Vertex('vL');
4 e1 = v1.addEdge('eL', v2);
5 e2 = v1.addEdge('eL', v3);
6
7 // original query
8 g.V().bothE().count(); -- 4 ✔
9
10 // disassembled queries
11 g.V(); -- v:{1,2,3}
12 g.V(1,2,3).bothE(); -- e:{1,2,1,2}
13 g.E(1,2,1,2).count(); -- 2 ✘

Figure 11: HugeGraph retrieves wrongly edges when 𝐸 ()’s
parameter contains duplicate edge IDs in HugeGraph#1946.

1 // original query
2 MATCH (p:Person) -[:Write]-> (b1:Book), (p) -[:Read]->(b2:Book

) RETURN b2 // -- {}
3
4 // disassembled queries
5 MATCH (p:Person) -[:Write]-> (b1:Book) RETURN p.id //--v:{1}
6 MATCH (p:Person) -[:Read]->(b2:Book) WHERE p.id=1 RETURN b2

// --{}

Figure 12: An example of extending QuDi to Cypher query
language.

Incorrect handling of E() operation. Figure 11 shows an ex-
ample of the incorrect implementation of Gremlin API 𝐸 () in Huge-
Graph. In this test case, we create three vertices (i.e., 𝑣 :1, 𝑣 :2, and
𝑣 :3) and two edges (i.e., 𝑒 :1 and 𝑒 :2) (Line 1-5). We want to count the
number of the incoming and outgoing edges of all vertices (Line 8).
The expected result is 4 because each edge is retrieved twice. How-
ever, when we execute the disassembled query of Line 13, a wrong
result 2 is returned. Specially, the query 𝑔.𝐸 (1, 2, 1, 2) returns an
edge list 𝑒 :{1, 2} instead of 𝑒 :{1, 2, 1, 2}, which causes the incorrect
result. HugeGraph developers have confirmed this bug.

5 Discussion
Generalizing QuDi to other database systems. By disassembling
a complex query into multiple atomic queries, we can prevent some
optimizations from kicking in, thus revealing logic bugs caused by
the assembly of atomic queries and related optimizations. In this
paper, we apply the idea of query disassembling only on Gremlin-
based GDBs. However, query disassembling is a general idea, and
can be potentially applicable on other database systems.

First, some other graph query languages, e.g., Cypher [24] and
SPARQL [18], adopt the same philosophy as Gremlin (construct-
ing a subgraph through a graph traversal model) to query GDBs.
Therefore, we can also disassemble graph queries written in these
graph query languages into multiple atomic queries through query
disassembling. Figure 12 shows such an example, in which we dis-
assemble a Cypher query (Line 2) into a sequence of atomic queries
(Line 5-6) using query disassembling. Therefore, we can extend
QuDi on those GDBs that support other graph query languages.

Second, query disassembling can also be applied to disassemble
sub-queries and joins of SQL queries in relational database systems.
As shown in Figure 13, we can disassemble the SQL query (Line 2)
into two atomic queries. Specifically, one atomic query executes
the sub-query (SELECT c1, c2 FROM t1) and stores its query results
into a newly created table 𝑡2 (Line 5) and the other atomic query

Testing Gremlin-Based Graph Database Systems viaQuery Disassembling ISSTA ’24, September 16–20, 2024, Vienna, Austria

1 // original query
2 SELECT c1 FROM (SELECT c1, c2 FROM t1);
3
4 // disassembled queries
5 CREATE TABLE t2 AS SELECT c1, c2 FROM t1;
6 SELECT c1 FROM t2;

Figure 13: An example of extending QuDi to SQL queries in
relational database systems.

searches 𝑐1 from the newly created table 𝑡2 (Line 6). Thus, QuDi
can also help to test relational database systems.

Limitations. Three kinds of bugs cannot be found by QuDi. First,
QuDi cannot detect bugs in the Gremlin query APIs (e.g., 𝑝𝑎𝑡ℎ()
and 𝑡𝑟𝑒𝑒 ()), whose outputs are affected by the entire execution of
a Gremlin query. Second, QuDi cannot detect bugs in the Gremlin
APIs related to vertex computations in Gremlin, such as 𝑝𝑎𝑔𝑒𝑅𝑎𝑛𝑘 ()
and 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(). These APIs perform more complex operations,
which cannot be disassembled directly. Third, If the original query
and its disassembled queries retrieve the same wrong query result,
QuDi cannot detect it.

Threats to validity. First, we evaluate QuDi on six Gremlin-
based GDBs. These GDBs rank on the top of GDB popularity, and
all of them are well maintained. Thus, we believe they are repre-
sentative for Gremlin-based GDBs. Second, we manually reproduce
and deduplicate bug reports, which may introduce human errors. To
alleviate this threat, three authors study all reported bugs carefully
and reach a consensus for them. Third, the comparisons between
QuDi and the closest-related works are also threats. Although we
do not compare QuDiwith GDBMeter by actual evaluation, we have
made a careful analysis for them.

6 Related Work
Differential testing. Differential testing [49] is a common ap-
proach for finding bugs in several research domains [29, 49, 55, 61,
64]. Some approaches [30, 41, 46, 55] have been proposed to test
relational database systems via differential testing. For example,
APOLLO [41] detects performance regression bugs with differen-
tial testing. DT2 [30] utilizes differential testing to find transaction
bugs in relational database systems. To test GDBs, Grand [64], GD-
smith [39], and RD2 [60] utilize differential testing to find logic
bugs in multiple GDBs with Gremlin, Cypher, and SPARQL query
languages, respectively. However, differential testing cannot pro-
vide a testing oracle for a target GDB, and can miss logic bugs and
encounter false positives due to target GDBs’ special semantics.

Metamorphic testing. Metamorphic testing [48] aims to ad-
dress the test oracle problem [28] by mutating test cases according
to metamorphic relations. Some metamorphic testing approaches
[37, 51, 52, 56, 57] for finding bugs in relational database systems
have been proposed. For example, query partitioning [52] derives
a given query to multiple disjoint sub-queries, in which the result
of the given query is the same as the combination result of dis-
joint sub-queries. NoREC [51] transforms an optimized SQL query
to a non-optimized SQL query, and can find optimization bugs in
relational database systems. However, all the above approaches
target database systems with declarative SQL query language. They
cannot effectively test Gremlin-based GDBs because Gremlin and
SQL have totally different syntaxes and query patterns.

To test GDBs, GDBMeter [42] derives a graph query into three
disjoint sub-queries by randomly generating a predicate, which
mainly focuses on predicate-related bugs. Gamera [65] designs
three types of graph-aware metamorphic relations, which can be
used to generate diverse and complex graph queries, and then re-
veal logic bugs in GDBs. Mang et al. [47] propose equivalent query
rewriting (EQR), which rewrites a graph query into equivalent
graph queries that trigger distinct query plans, to detect bugs in
GDBs. Given a graph query 𝑄 , GraphGenie [40] derives a mutated
graph querywhose query result set is either semantically equivalent
to the result set of𝑄 or constitutes a subset or superset of the result
set of 𝑄 , depending on the mutation applied. DOT [63] can detect
optimization bugs by testing a graph query with two different opti-
mization configurations. However, these approaches cannot reveal
assembly issues in GDBs. Our approach proposes a new metamor-
phic rule to detect logic bugs related to incorrect implementations
and optimizations of the assembly of atomic graph traversals. Thus,
our approach is complementary to these approaches.

Other testing approaches of relational database systems.
SQLsmith [19] can test relational database systems by randomly
generating SQL queries. The generic fuzzing tools (e.g., AFL [1])
can also be used to test relational database systems. ADUSA [43,
44] uses a relational constraint solver, Alloy [2], to generate the
expected result of a given SQL query. PQS [53] tests the correctness
of relational database systems by randomly selecting a pivot row
and generating random SQL queries that contain the selected row.
QPG [27] can improve testing efficiency by exploring a variety
of unique query plans. Troc [34] detects transaction bugs [31] by
inferring the expected results of concurrent transaction executions.
However, these approaches cannot be directly applied to test GDBs.

7 Conclusion
Buggy implementations and optimizations of Gremlin-based graph
database systems can introduce logic bugs, which can lead to se-
vere consequences, e.g., incorrect query results. In this paper, we
propose query disassembling (QuDi) to reveal logic bugs in graph
database systems by disassembling a complex Gremlin query into
an equivalent atomic graph traversal sequence. We evaluate QuDi
on six widely-used graph database systems, and have detected 25
unique logic bugs, 10 of which are previously-unknown bugs. We
expect that the effectiveness and generality of our technique can
greatly improve the robustness of graph database systems and other
database systems.

8 Data Availability
The source code of QuDi is available at Zenodo [20].

Acknowledgments
Wewould like to thank the anonymous reviewers for their thorough
and insightful comments. This work was partially supported by
National Natural Science Foundation of China (62072444, 62302493),
Major Project of ISCAS (ISCAS-ZD-202302), Major Program (JD)
of Hubei Province (2023BAA018), Youth Innovation Promotion
Association at Chinese Academy of Sciences (Y2022044, 2023121),
and Guangdong Power grid limited liability company under Project
037800KC23090006.

ISSTA ’24, September 16–20, 2024, Vienna, Austria Y. Zheng, W. Dou, L. Tang, Z. Cui, Y. Gao, J. Song, L. Xu, J. Zhu, W. Wang, J. Wei, H. Zhong, and T. Huang

References
[1] 2024. AFL. https://github.com/google/AFL.
[2] 2024. Alloy. https://alloytools.org/.
[3] 2024. DB-Engines Ranking of Graph DBMS. https://db-engines.com/en/ranking/

graph+dbms.
[4] 2024. Gremlin Query Language. https://tinkerpop.apache.org/gremlin.html.
[5] 2024. Gremlin Traversal Strategy. https://tinkerpop.apache.org/docs/3.5.2/.
[6] 2024. HugeGraph. https://hugegraph.github.io/hugegraph-doc/.
[7] 2024. Introducing the new Cypher Query Optimizer. https://neo4j.com/blog/

introducing-new-cypher-query-optimizer/.
[8] 2024. JanusGraph. https://janusgraph.org.
[9] 2024. MariaDB. https://mariadb.org.
[10] 2024. MySQL. https://www.mysql.com.
[11] 2024. Nebula Graph Query Language (nGQL). https://docs.nebula-graph.io/2.0.

1/3.ngql-guide/1.nGQL-overview/1.overview/.
[12] 2024. Neo4j. https://neo4j.com/.
[13] 2024. Neo4j-Gremlin. https://github.com/thinkaurelius/neo4j-gremlin-plugin.
[14] 2024. The Next Generation Multi-Model Database Supporting Graphs Key/Value,

Documents and Time-Series. https://arcadedb.com/.
[15] 2024. Open Source, Distributed, Scalable, Lightning Fast. https://nebula-graph.

io/.
[16] 2024. OrientDB. https://orientdb.org.
[17] 2024. PostgreSQL. https://www.postgresql.org.
[18] 2024. SPARQL 1.1 Query Language. https://www.w3.org/TR/sparql11-query/.
[19] 2024. SQLsmith. https://github.com/anse1/sqlsmith.
[20] 2024. Testing Gremlin-Based Graph Database Systems via Query Disassembling.

Retrieved July 18, 2024 from https://doi.org/10.5281/zenodo.12771889
[21] 2024. TiDB, PingCAP. https://pingcap.com.
[22] 2024. TinkerGraph. https://github.com/tinkerpop/blueprints/wiki/tinkergraph.
[23] 2024. TinkerPop. https://tinkerpop.apache.org/.
[24] 2024. What is openCypher? http://www.opencypher.org/.
[25] Renzo Angles, Juan L. Reutter, and Hannes Voigt. 2019. Graph Query Languages.

In Encyclopedia of Big Data Technologies, Sherif Sakr and Albert Y. Zomaya (Eds.).
[26] Marcelo Arenas, Claudio Gutiérrez, and Juan F. Sequeda. 2021. Querying in

the Age of Graph Databases and Knowledge Graphs. In Proceedings of ACM
SIGMOD International Conference on Management of Data (SIGMOD). 2821–2828.
https://doi.org/10.1145/3448016.3457545

[27] Jinsheng Ba and Manuel Rigger. 2023. Testing Database Engines via Query
Plan Guidance. In Proceedings of IEEE/ACM International Conference on Software
Engineering (ICSE). 2060–2071. https://doi.org/10.1109/ICSE48619.2023.00174

[28] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo.
2015. The Oracle Problem in Software Testing: A Survey. IEEE Trans. Software
Eng. 41, 5 (2015), 507–525.

[29] Shafiul Azam Chowdhury, Soumik Mohian, Sidharth Mehra, Siddhant Gawsane,
Taylor T. Johnson, and Christoph Csallner. 2018. Automatically Finding Bugs in
a Commercial Cyber-Physical System Development Tool Chain with SLforge. In
Proceedings of International Conference on Software Engineering (ICSE). 981–992.
https://doi.org/10.1145/3180155.3180231

[30] Ziyu Cui, Wensheng Dou, Qianwang Dai, Jiansen Song, Wei Wang, Jun Wei, and
Dan Ye. 2022. Differentially Testing Database Transactions for Fun and Profit. In
Proceedings of International Conference on Automated Software Engineering (ASE).
35:1–35:12. https://doi.org/10.1145/3551349.3556924

[31] Ziyu Cui, Wensheng Dou, Yu Gao, Dong Wang, Jiansen Song, Yingying Zheng,
Tao Wang, Rui Yang, Kang Xu, Yixin Hu, Jun Wei, and Tao Huang. 2024. Un-
derstanding Transaction Bugs in Database Systems. In Proceedings of the 46th
IEEE/ACM International Conference on Software Engineering (ICSE). 163:1–163:13.
https://doi.org/10.1145/3597503.3639207

[32] Alin Deutsch. 2018. Querying Graph Databases with the GSQL Query Language.
In Proceedings of Simpósio Brasileiro de Banco de Dados (SBBD). 313.

[33] Alin Deutsch, Yu Xu, Mingxi Wu, and Victor E. Lee. 2020. Aggregation Support
for Modern Graph Analytics in TigerGraph. In Proceedings of ACM SIGMOD
International Conference on Management of Data (SIGMOD). 377–392. https:
//doi.org/10.1145/3318464.3386144

[34] Wensheng Dou, Ziyu Cui, Qianwang Dai, Jiansen Song, Dong Wang, Yu Gao,
Wei Wang, Jun Wei, Lei Chen, Hanmo Wang, Hua Zhong, and Tao Huang. 2023.
Detecting Isolation Bugs via Transaction Oracle Construction. In Proceedings of
IEEE/ACM International Conference on Software Engineering (ICSE). 1123–1135.
https://doi.org/10.1109/ICSE48619.2023.00101

[35] Orri Erling, Alex Averbuch, Josep Lluís Larriba-Pey, Hassan Chafi, Andrey Gu-
bichev, Arnau Prat-Pérez, Minh-Duc Pham, and Peter A. Boncz. 2015. The
LDBC Social Network Benchmark: Interactive Workload. In Proceedings of ACM
SIGMOD International Conference on Management of Data (SIGMOD). 619–630.
https://doi.org/10.1145/2723372.2742786

[36] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. 2018. Cypher: An Evolving Query Language for Property Graphs.
In Proceedings of ACM SIGMOD International Conference on Management of Data

(SIGMOD). 1433–1445. https://doi.org/10.1145/3183713.3190657
[37] Zongyin Hao, Quanfeng Huang, Chengpeng Wang, Jianfeng Wang, Yushan

Zhang, Rongxin Wu, and Charles Zhang. 2023. Pinolo: Detecting Logical Bugs
in Database Management Systems with Approximate Query Synthesis. In Pro-
ceedings of USENIX Annual Technical Conference (USENIX ATC). 345–358.

[38] Zhenzhen He, Jiong Yu, and Binglei Guo. 2022. Execution Time Prediction for
Cypher Queries in the Neo4j Database Using a Learning Approach. Symmetry
14, 1 (2022), 55.

[39] Ziyue Hua, Wei Lin, Luyao Ren, Zongyang Li, Lu Zhang, and Tao Xie. 2023.
GDsmith: Detecting Bugs in Cypher Graph Database Engines. In Proceedings
of International Symposium on Software Testing and Analysis (ISSTA). 163–174.
https://doi.org/10.1145/3597926.3598046

[40] Yuancheng Jiang, Jiahao Liu, Jinsheng Ba, Roland H. C. Yap, Zhenkai Liang, and
Manuel Rigger. 2024. Detecting Logic Bugs in Graph Database Management
Systems via Injective and Surjective Graph Query Transformation. In Proceedings
of the 46th IEEE/ACM International Conference on Software Engineering (ICSE).
46:1–46:12. https://doi.org/10.1109/ICST60714.2024.00012

[41] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and Woon-Hak Kang. 2019.
APOLLO: Automatic Detection and Diagnosis of Performance Regressions in
Database Systems. Proceedings of the VLDB Endowment (VLDB) 13, 1 (2019),
57–70.

[42] Matteo Kamm, Manuel Rigger, Chengyu Zhang, and Zhendong Su. 2023. Testing
Graph Database Engines via Query Partitioning. In Proceedings of ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA). https://doi.
org/10.1145/3597926.3598044

[43] Shadi Abdul Khalek, Bassem Elkarablieh, Yai O. Laleye, and Sarfraz Khurshid.
2008. Query-Aware Test Generation Using a Relational Constraint Solver. In Pro-
ceedings of IEEE/ACM International Conference on Automated Software Engineering
(ASE). 238–247. https://doi.org/10.1109/ASE.2008.34

[44] Shadi Abdul Khalek and Sarfraz Khurshid. 2010. Automated SQL query gener-
ation for systematic testing of database engines. In International Conference on
Automated Software Engineering (ASE). 329–332. https://doi.org/10.1145/1858996.
1859063

[45] Baozhu Liu, Xin Wang, Pengkai Liu, Sizhuo Li, Qiang Fu, and Yunpeng Chai.
2021. UniKG: A Unified Interoperable Knowledge Graph Database System. In
Proceedings of IEEE International Conference on Data Engineering (ICDE). 2681–
2684. https://doi.org/10.1109/ICDE51399.2021.00303

[46] Xinyu Liu, Qi Zhou, Joy Arulraj, and Alessandro Orso. 2022. Automatic Detec-
tion of Performance Bugs in Database Systems Using Equivalent Queries. In
Proceedings of International Conference on Software Engineering (ICSE). 225–236.
https://doi.org/10.1145/3510003.3510093

[47] Qiuyang Mang, Aoyang Fang, Boxi Yu, Hanfei Chen, and Pinjia He. 2024. Testing
Graph Database Systems via Equivalent Query Rewriting. In Proceedings of the
46th IEEE/ACM International Conference on Software Engineering (ICSE). 143:1–
143:12. https://doi.org/10.1145/3597503.3639200

[48] Muhammad Numair Mansur, Maria Christakis, and Valentin Wüstholz. 2021.
Metamorphic Testing of Datalog Engines. In Proceedings of ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). 639–650. https://doi.org/10.1145/3468264.3468573

[49] William M. McKeeman. 1998. Differential Testing for Software. Digit. Tech. J. 10,
1 (1998), 100–107.

[50] Yuxiang Ren, Hao Zhu, Jiawei Zhang, Peng Dai, and Liefeng Bo. 2021. En-
semFDet: An Ensemble Approach to Fraud Detection based on Bipartite Graph.
In Proceedings of International Conference on Data Engineering (ICDE). 2039–2044.
https://doi.org/10.1109/ICDE51399.2021.00197

[51] Manuel Rigger and Zhendong Su. 2020. Detecting Optimization Bugs in Database
Engines via Non-Optimizing Reference Engine Construction. In Proceedings of
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE). 1140–1152. https://doi.org/10.
1145/3368089.3409710

[52] Manuel Rigger and Zhendong Su. 2020. Finding Bugs in Database Systems via
Query Partitioning. 4, Article 211 (2020), 30 pages.

[53] Manuel Rigger and Zhendong Su. 2020. Testing Database Engines via Pivoted
Query Synthesis. In Proceedings of USENIX Symposium on Operating Systems
Design and Implementation (OSDI). 667–682.

[54] Marko A. Rodriguez. 2015. The Gremlin Graph Traversal Machine and Lan-
guage (Invited Talk). In Proceedings of the Symposium on Database Programming
Languages (DBPL). 1–10. https://doi.org/10.1145/2815072.2815073

[55] Donald S. Slutz. 1998. Massive Stochastic Testing of SQL. In Proceedings of
International Conference on Very Large Data Bases (VLDB). 618–622.

[56] Jiansen Song, Wensheng Dou, Ziyu Cui, Qianwang Dai, Wei Wang, Jun Wei,
Hua Zhong, and Tao Huang. 2023. Testing Database Systems via Differential
Query Execution. In Proceedings of IEEE/ACM International Conference on Software
Engineering (ICSE). 2072–2084. https://doi.org/10.1109/ICSE48619.2023.00175

[57] Jiansen Song, Wensheng Dou, Yu Gao, Ziyu Cui, Yingying Zheng, Dong Wang,
Wei Wang, Jun Wei, and Tao Huang. 2024. Detecting Metadata-Related Logic
Bugs in Database Systems via Raw Database Construction. Proceedings of the
VLDB Endowment (VLDB) (2024).

https://github.com/google/AFL
https://alloytools.org/
https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms
https://tinkerpop.apache.org/gremlin.html
https://tinkerpop.apache.org/docs/3.5.2/
https://hugegraph.github.io/hugegraph-doc/
https://neo4j.com/blog/introducing-new-cypher-query-optimizer/
https://neo4j.com/blog/introducing-new-cypher-query-optimizer/
https://janusgraph.org
https://mariadb.org
https://www.mysql.com
https://docs.nebula-graph.io/2.0.1/3.ngql-guide/1.nGQL-overview/1.overview/
https://docs.nebula-graph.io/2.0.1/3.ngql-guide/1.nGQL-overview/1.overview/
https://neo4j.com/
https://github.com/thinkaurelius/neo4j-gremlin-plugin
https://arcadedb.com/
https://nebula-graph.io/
https://nebula-graph.io/
https://orientdb.org
https://www.postgresql.org
https://www.w3.org/TR/sparql11-query/
https://github.com/anse1/sqlsmith
https://doi.org/10.5281/zenodo.12771889
https://pingcap.com
https://github.com/tinkerpop/blueprints/wiki/tinkergraph
https://tinkerpop.apache.org/
http://www.opencypher.org/
https://doi.org/10.1145/3448016.3457545
https://doi.org/10.1109/ICSE48619.2023.00174
https://doi.org/10.1145/3180155.3180231
https://doi.org/10.1145/3551349.3556924
https://doi.org/10.1145/3597503.3639207
https://doi.org/10.1145/3318464.3386144
https://doi.org/10.1145/3318464.3386144
https://doi.org/10.1109/ICSE48619.2023.00101
https://doi.org/10.1145/2723372.2742786
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1145/3597926.3598046
https://doi.org/10.1109/ICST60714.2024.00012
https://doi.org/10.1145/3597926.3598044
https://doi.org/10.1145/3597926.3598044
https://doi.org/10.1109/ASE.2008.34
https://doi.org/10.1145/1858996.1859063
https://doi.org/10.1145/1858996.1859063
https://doi.org/10.1109/ICDE51399.2021.00303
https://doi.org/10.1145/3510003.3510093
https://doi.org/10.1145/3597503.3639200
https://doi.org/10.1145/3468264.3468573
https://doi.org/10.1109/ICDE51399.2021.00197
https://doi.org/10.1145/3368089.3409710
https://doi.org/10.1145/3368089.3409710
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.1109/ICSE48619.2023.00175

Testing Gremlin-Based Graph Database Systems viaQuery Disassembling ISSTA ’24, September 16–20, 2024, Vienna, Austria

[58] Ran Wang, Zhengyi Yang, Wenjie Zhang, and Xuemin Lin. 2020. An Empirical
Study on Recent Graph Database Systems. In Proceedings of International Con-
ference on Knowledge Science, Engineering and Management (KSEM). 328–340.
https://doi.org/10.1007/978-3-030-55130-8_29

[59] Min Wu, Xinglu Yi, Hui Yu, Yu Liu, and Yujue Wang. 2022. Nebula Graph: An
Open Source Distributed Graph Database. CoRR abs/2206.07278 (2022).

[60] Rui Yang, Yingying Zheng, Lei Tang, Wensheng Dou, Wei Wang, and Jun Wei.
2023. Randomized Differential Testing of RDF Stores. In Proceedings of IEEE/ACM
International Conference on Software Engineering (ICSE Demo). 136–140. https:
//doi.org/10.1109/ICSE-Companion58688.2023.00041

[61] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and
Understanding Bugs in C Compilers. In Proceedings of International Confer-
ence on Programming Language Design and Implementation (PLDI). 283–294.
https://doi.org/10.1145/1993316.1993532

[62] Yui Yang, Yingying Zheng, Lei Tang, Wensheng Dou, Wei Wang, and Jun Wei.
2023. Randomized Differential Testing of RDF Stores. In Proceedings of Interna-
tional Conference on Software Engineering: Companion Proceedings (ICSE Com-
panion). 136–140. https://doi.org/10.1109/ICSE-Companion58688.2023.00041

[63] Yingying Zheng, Wensheng Dou, Lei Tang, Ziyu Cui, Jiansen Song, Ziyue Cheng,
Wei Wang, Jun Wei, Hua Zhong, and Tao Huang. 2024. Differential Optimization
Testing of Gremlin-Based Graph Database Systems. In Proceedings of the 17th IEEE
International Conference on Software Testing, Verification and Validation (ICST).
25–36.

[64] Yingying Zheng, Wensheng Dou, Yicheng Wang, Zheng Qin, Lei Tang, Yu Gao,
Dong Wang, Wei Wang, and Jun Wei. 2022. Finding Bugs in Gremlin-Based
Graph Database Systems via Randomized Differential Testing. In Proceedings
of International Symposium on Software Testing and Analysis (ISSTA). 302–313.
https://doi.org/10.1145/3533767.3534409

[65] Zeyang Zhuang, Penghui Li, Pingchuan Ma, Wei Meng, and Shuai Wang. 2023.
Testing Graph Database Systems via Graph-Aware Metamorphic Relations. Pro-
ceedings of the VLDB Endowment (VLDB) 17, 4 (2023), 836–848.

https://doi.org/10.1007/978-3-030-55130-8_29
https://doi.org/10.1109/ICSE-Companion58688.2023.00041
https://doi.org/10.1109/ICSE-Companion58688.2023.00041
https://doi.org/10.1145/1993316.1993532
https://doi.org/10.1109/ICSE-Companion58688.2023.00041
https://doi.org/10.1145/3533767.3534409

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Labeled Property Graph Model
	2.2 Gremlin Query Language
	2.3 Gremlin Traversal Model
	2.4 Gremlin Query Execution

	3 Approach
	3.1 Graph Database and Query Generation
	3.2 Query Disassembling
	3.3 Atomic Traversal Execution

	4 Evaluation
	4.1 Methodology
	4.2 Detected Bugs
	4.3 Comparing with Existing Approaches
	4.4 Selected Interesting Bugs

	5 Discussion
	6 Related Work
	7 Conclusion
	8 Data Availability
	Acknowledgments
	References

