
DisTA: Generic Dynamic Taint Tracking for
Java-Based Distributed Systems

Dong Wang, Yu Gao, Wensheng Dou, Jun Wei
State Key Lab of Computer Sciences, Institute of Software, Chinese Academy of Sciences, Beijing, China

University of Chinese Academy of Sciences, Beijing, China
{wangdong18, gaoyu15, wsdou, wj}@otcaix.iscas.ac.cn

Abstract—Dynamic taint tracking is a powerful information
flow analysis approach, which can be applied in many analysis
scenarios, e.g., debugging, testing, and security vulnerability
detection. Most dynamic taint tracking approaches are designed
for standalone systems, and cannot support inter-node taint
tracking in distributed systems. Few inter-node taint tracking
approaches are designed for specific distributed systems, e.g.,
Apache Spark, and require specific modifications to different
distributed systems.

In this paper, we present DisTA, a generic dynamic taint
tracking tool for Java-based distributed systems. By instrument-
ing common network communication modules in Java, DisTA
can perform inter-node taint tracking for different distributed
systems with little manual efforts. We evaluate DisTA on five
large-scale real-world distributed systems, e.g., ZooKeeper and
Yarn, and require only 10 LOC launch script modification on
average. The experimental results show that DisTA can accurately
track all inter-node taints with a relatively low overhead.

Index Terms—taint tracking, data flow analysis, distributed
systems

I. INTRODUCTION

Dynamic taint tracking (DTA) [1] is a commonly-used
technique in privacy leakage detection [2], SQL injection
detection [3], program debugging [4], [5] and testing [2],
[6], [7], etc. With DTA tools, developers first assign taints to
certain specific data in the program, i.e., taint source points.
Then, taints can propagate along with data during the program
execution. Users can further set program points in the program,
i.e., taint sink points, to check whether the data is tainted.

Nowadays, distributed systems, e.g, distributed computing
frameworks [8], [9], storage systems [10], [11], synchro-
nization services [12], [13], have become pervasive. These
distributed systems are usually deployed on multiple machines
(i.e., nodes) which communicate with each other by messages.
Sometimes, multiple distributed systems, e.g., distributed com-
puting frameworks and storage systems, also need to work
together to fulfil specific user requirements. This hinders
applying DTA in distributed systems, for example, tracking
the privacy data in storage systems to monitor if the privacy
data is leaked to untrusted nodes [14].

Existing DTA tools [15]–[21], e.g., Phosphor [22] and
TaintDroid [2], mainly work on standalone systems, and can
only perform intra-node taint tracking. They usually treat
the communication among nodes as a blackbox, and cannot
perform inter-node taint tracking. Further, they cannot perform

taint tracking among multiple distributed systems, i.e., cross-
system taint tracking.

Few tools are designed for tracking taints in distributed
systems, e.g., Taint-Exchange [23], Kakute [14], and FlowDist
[24]. Taint-Exchange intercepts network related system calls to
propagate taints with messages. Kakute [14] modifies Apache
Spark’s network communication methods, i.e., shuffle meth-
ods, and then propagates taints among nodes within RDD data.
FlowDist [24] manually pairs the specified message-passing
APIs for senders and receivers, e.g., SocketChannel.read and
SocketChannel.write, to trace message transfer between nodes,
and further analyzes inter-node data flows by static analysis.

However, these tools suffer from soundness, precision and
usability issues. Taint-Exchange [23] can only support the
single taint, i.e., mark the data as tainted or not, which prevents
it being used in some scenarios, e.g., program debugging [5].
Besides, it cannot be applied on Java programs running in
JVM. Kakute [14] can only work on Apache Spark, and cannot
track other data except Spark RDDs. FlowDist [24] requires
developers to use their experience to annotate message-passing
API mapping, and write dozens of script files to drive its anal-
ysis. Furthermore, its static analysis can introduce precision
issues.

In this paper, we present DisTA, a generic dynamic taint
tracking tool for Java-based distributed systems. DisTA has
the following three advantages over existing approaches.

• Sound. Network communication in Java-based dis-
tributed systems utilizes Java Native Interface, i.e., JNI,
to bridge Java APIs and the underlying operating system.
DisTA instruments network communication APIs at the
JNI level, and avoids missing network communication
in distributed systems. Thus, DisTA is sound for taint
tracking involving network communication.

• Precise. All messages between nodes are finally trans-
ferred into bytes. To achieve high precision, DisTA per-
form inter-node taint tracking at the byte-level granularity
for all network communication APIs.

• Generic. By instrumenting the common network com-
munication modules in JRE, DisTA can be easily applied
to different Java-based distributed systems without extra
system-specific modifications. By supporting multi-taint
tracking, DisTA can be used in multiple scenarios.

To evaluate DisTA, we build a micro benchmark which
contains 30 test scenarios for common network communica-

Node 1
1. Vote vote = new Vote(“Vote Node 2”);

2. SendWorker(Vote data) {

3. Socket client = new Socket(Node2_ADDRESS);

4. OutputStream output = client.getOutputStream();

5. output.write(data.toBytes());

6. }

Node 2
16. RecvWorker(byte[] data) {

17. Socket server = serverSocket.accept();

18. InputStream input = client.getInputStream();

19. input.read(data);

20. }

21. Notification n = new Notification(data);

27. // solaris\native\java\net\SocketInputStream.c

28. Java_java_net_SocketInputStream

_socketRead0(jbyteArray data) {

29. NET_READ(data);

30. }

12. // solaris\native\java\net\SocketOutputStream.c

13. Java_java_net_SocketOutputStream

_socketWrite0(jbyteArray data) {

14. NET_SEND(data);

15. }

22. // java.net.SocketInputStream.java

23. read(byte[] b) {

24. socketRead0(…, b, …);

25. }

26. native socketRead0(…, byte[] b, …);

7. // java.net.SocketOutputStream.java

8. write(byte[] b) {

9. socketWrite0(…, b, …);

10. }

11. native socketWrite0(…, byte[] b, …);

D
istrib

u
te

d
 syste

m
JR

E
N

ative lib
rary

Fig. 1. A simplified communication example in ZooKeeper. Blue blocks indicate the message data. Solid arrows show the taint flows within one node, and
the dashed arrow shows the taint flows between two nodes through OS.

tion protocols. DisTA can precisely track all taints in these
test scenarios. We further apply DisTA on five real-world
distributed systems, i.e., ZooKeeper [12], MapReduce/Yarn
[25], ActiveMQ [26], RocketMQ [27] and HBase [10]. To run
DisTA on these systems, we only modify 10 LOC in the launch
script of these distributed systems on average. The experi-
mental results show that DisTA can successfully perform taint
tracking for these distributed systems without over-tainting or
losing any taints. The whole taint tracking process, including
the intra-node and inter-node tracking, causes 4.23X overhead,
while the pure intra-node tracking causes 3.92X overhead,
meaning that it is not expensive in inter-node tracking. We
have made DisTA and its experimental benchmarks publicly
available at https://github.com/tcse-iscas/DisTA.

In summary, this paper makes the following contributions.
• We design and implement DisTA, a generic taint tracking

tool for distributed systems. DisTA can be easily applied
on different distributed systems with small manual efforts
and be used in multiple taint tracking scenarios.

• We evaluate DisTA on the micro benchmark and real-
world distributed systems, and the experimental results
show that DisTA can effectively and efficiently perform
inter-node taint tracking in diverse distributed systems.

II. BACKGROUND AND MOTIVATION

In this section, we use a simplified example in ZooKeeper
[12] to illustrate the network communication process in dis-
tributed systems (Section II-A). We further introduce intra-
node taint tracking (Section II-B) and its limitation (Sec-
tion II-C). Finally, we discuss and compare existing DTA tools
for distributed systems (Section II-D).

A. Motivating Example

Figure 1 shows ZooKeeper’s communication that Node1
votes for Node2. Node1 first constructs a Vote data (Line 1),
and then passes it to the SendWorker (Line 2). In SendWorker,

1. int a, b;

2. + Taint a_t = new Taint(“a_tag”);

3. + Taint b_t = new Taint(“b_tag”);

4. int c = a + b;

5. + Taint c_t = a_t.combine(b_t);

Fig. 2. Phosphor assigns a taint to every variable.

write method is called (Line 5) for writing data into the
output stream. The implementation of write method (Line
8 - 10) is located in SocketOutputStream.java, which is a
JRE class. In the method body, a JNI method socketWrite0
is called. The corresponding native method (Line 13 - 15)
of socketWrite0 is implemented in C language, and it calls
the method NET SEND (Line 14). NET SEND is a Linux
system call method which can deliver the data buf to OS
to send out of the node. Line 16 - 30 shows the code
executed on Node2. It follows a similar process as Node1.
We follow the taint flow and state the process from the lowest
code level to the highest. The native method (Line 28 - 30)
in SocketInputStream.c first invokes the system call method
NET READ to read data and store it in data (Line 29). Then
the data is passed to the JNI method socketRead0 and further
to read in SocketInputStream.java. Finally, the data is passed
to the RecvWorker (Line 16 - 20). RecvWorker reads the data
from the input stream and stores it in an object Notification
(Line 21).

B. Taint Tracking for Standalone Programs

The example in Figure 1 shows two standalone programs:
the program executed on Node1 (Line 1 - 15) and the other
one executed on Node2 (Line 16 - 30). The solid arrows show
the taint flows within the single node. Existing DTA tools can
track these flows with good soundness and precision. We take
Phosphor [22], the state-of-the-art DTA tool, as the example
to state how these tools perform intra-node taint tracking.

https://github.com/tcse-iscas/DisTA

root

< 1, a_tag> < 2, b_tag>

a_t b_t

< 2, b_tag>

c_t

Fig. 3. Phosphor uses a singleton tree to store all taint tags.

Phosphor adds a shadow variable as the taint of every
variable, and utilizes ASM [28] to instrument Java bytecode
so that taints can propagate with data. We illustrate its designs
in two aspects, i.e., taint storage and taint propagation.

Taint storage. Phosphor assigns a taint to each variable
in the program. A taint is a set composed of multiple tags.
Once developers set a variable as a taint source point, the
corresponding taint is assigned with a unique tag. The code
snippet in Figure 2 shows an example. The original code
declares three variables a, b (Line 1) and c (Line 4). Phosphor
assigns each variable with a shadow variable as its taint, i.e.,
a t (Line 2) for a, b t (Line 3) for b, and c t (Line 5) for
c, respectively. These taints are initialized as empty, i.e., no
tags. In Figure 2 a and b are set as taint source points. Thus,
their taints are assigned by two String tags a tag and b tag,
respectively. Note that the value of the tag is set by developers.
It can be a String as the example, or any other object.

Phosphor maintains a singleton tree to store all taint tags.
As Figure 3 shows, when a new tag is assigned, a new node
is added as the child of the root node. Every node is a tuple
< ID, Tag >, where ID is the unique rank of the tag in the
tree, and Tag is the value of the tag. The taint can refer to a
tag in the tree, which implies that the taint is assigned with the
tag. Related to the code snippet in Figure 2, there are two tags
< 1, a tag > and < 2, b tag > as children of root. a t refers
to < 1, a tag > and b t refers to < 2, b tag >, implying that
a t has the tag a tag (i.e., a t = {a tag}) and b t has the
tag b tag (i.e., b t = {b tag}).

By utilizing the above taint storage strategy, Phosphor can
save much memory usage. If two variables have the same taint
tag, their taints can refer to the same node in the tree, thus
avoiding storing the same tags repeatedly.

Taint propagation. Phosphor uses the combination of taints
to represent the taint propagation process. Every variable
assignment is a taint propagation process. In Figure 2, variable
c is assigned by the result of a plus b. So its taint combines
taint a t and b t (i.e., c t = a t

⋃
b t). Correspondingly, in

Figure 3, the singleton tree adds a new node < 2, b tag > as
the child of < 1, a tag >, which implies that the tag of taint
a t is combined with the tag of taint b t. This new node is
referred by c t. c t has all tags on the path from the root to
the node it refers to. Thus, c t has both a tag and b tag (i.e.,
c t = {a tag, b tag}).

1. public int native socketRead0(byte[] data);

2.

3. + public ReturnTaint socketRead0(byte[] data,

+ Taint data_t) {

4. + ReturnTaint ret = new ReturnTaint();

5. + ret.value = socketRead0(data);

6. + ret.taint = data_t;

7. + return ret;

8. + }

Fig. 4. Phosphor surrounds the native method with a wrapper.

C. Limitations in Intra-node Taint Tracking

Phosphor performs taint tracking by instrumenting Java
bytecode. Thus, it can track taint flows in Java code, but
cannot handle with flows in the native code. Taking Figure 1
as an example, Phosphor cannot track taints in Line 12 - 15
and Line 28 - 30. To solve this problem, Phosphor surrounds
JNI methods (e.g., SocketWrite0) with a wrapper, and directly
assigns taints of parameters to the return value. As shown in
Figure 4, for the original native method socketRead0 (Line
1), Phosphor adds a wrapper method (Line 3 - 8). When the
original method is called, this wrapper is called instead. In
the wrapper body, a ReturnTaint object which can wrap the
return value and its taint is created (Line 4). Then, the original
native method is called to receive the message and store it in
data object. However, the taint of the message is lost. Instead,
Phosphor directly assigns the taint of the parameter data t
to the message. Obviously, it tracks a wrong taint flow, and
makes the taint tracking unsound and imprecise.

D. Inter-node Taint Tracking

In general, building the inter-node taint tracking tool must
focus on challenges of three factors:

1) Soundness: If a tool is not sound, then it may incorrectly
drop taint information of the data. This usually happens
when data in some network communication APIs are not
tracked. Thus taints cannot propagate through these APIs.

2) Precision: If a tool is not precise, it may incorrectly add
additional taint information to the data, i.e., over-tainting.
In inter-node taint tracking, low precision is usually due
to the coarse granularity in tracking message.

3) Usability: If a tool can only track taints in some specific
systems or some specific scenarios, or requires lots of
manual efforts when applied to different systems, we say
it has poor usability.

Some tools have been developed for tracking taints in
distributed systems, e.g., Taint-Exchange [23], Kakute [14],
and FlowDist [24]. We explain them as follows.

Taint-Exchange [23] is a generic inter-node taint tracking
tool for x86 binaries. It utilizes libdft [29] to perform intra-
node taint tracking. To make taints propagate between nodes,
Taint-Exchange intercepts Linux system calls such as write(),
send(), socket() and accept() to wrap the taint information
with the data and transfer them together through network.
Since the system call level instrumentation does not require

modifying the upper applications, Taint-Exchange can be ap-
plied in different programs. However, Taint-Exchange applies
a bit for every data to mark whether it is tainted. Thus,
it cannot taint different data by different taints and cannot
be applied in some scenarios, e.g., program debugging [5].
Besides, Taint-Exchange is specially designed for C-based x86
programs, so that it cannot track taints in Java programs.

Kakute [14] works for Spark [9] applications, and aims to
track RDDs in Spark. It leverages Phosphor [22] to track intra-
node taint propagation. To perform inter-node taint tracking,
it modifies shuffle APIs, which are specific to RDD transfer
in Apache Spark. Thus, Kakute cannot be applied in other
distributed systems that do not have shuffle APIs. Further,
Kakute cannot track other data that do not relate to RDDs in
Apache Spark, e.g., the password to login the Spark system.
Thus, Kakute is unsound in some taint tracking scenarios.
Through instrumenting the data structure of RDD, Kakute can
easily mark fields in RDDs as tainted, and further tracks them
at runtime. It is precise in RDD dependency analysis. However,
it cannot be precise enough for all tracking scenarios.

FlowDist [24], [30] can support different distributed sys-
tems. It requires developers to provide the message-passing
APIs used in distributed systems, so that FlowDist can
map the message sending and receiving statements at run-
time. After that, FlowDist performs offline static analysis
to track statement-level data flows in the program, and
merges intra-node data flows into a whole data flow graph
based on message-passing APIs mapping information. By
default, FlowDist only modifies 6 JRE APIs for network
communication, including two APIs for socket communication
(i.e., Socket.getInputStream/getOutputStream), two APIs for
object serialization I/O (i.e., ObjectInputStream.readObject/
ObjectOutputStream.writeObject), and two APIs for NIO (i.e.,
SocketChannel.read/write). However, there are over 100 APIs
for network communication in JRE. FlowDist can drop the
data flow information within these unmonitored APIs. Thus, it
is unsound. FlowDist performs statement-level static analysis,
which means it cannot distinguish different variables with
runtime values, thus introducing imprecision issues. Besides,
the combination of the static and dynamic analysis builds a
barrier for users to easily use it.

In comparison, our approach DisTA can perform sound and
precise taint tracking for different Java-based distributed sys-
tems. The architecture of DisTA is similar to Taint-Exchange.
We utilize Phosphor to perform intra-node taint tracking, and
instrument specific network communication APIs to make
taints propagate between nodes. The differences between
DisTA and Taint-Exchange locates at that we have instrumen-
tation designs, e.g., byte level tracking, to make DisTA sound
and precise, and runtime designs to solve practical problems
in scenarios requiring multiple taints. All these designs make
DisTA be a generic and easy-to-use taint tracking tool for
different distributed systems.

Instrumented JRE JNI

Taint
Map

Instrumented DS code

Unmodified native library

Instrumented DS code

Unmodified native library

Instrumented JREJNI

Node 1 Node 2

Fig. 5. The overview of DisTA.

III. DISTA DESIGN

Figure 5 shows an overview of DisTA. First, DisTA in-
struments all Java bytecode. The distributed system code and
part of JRE code are instrumented by Phosphor (Grey dashed
box areas), while DisTA further instruments the network
communication JNI methods (Blue solid box areas). Then,
at runtime, the instrumented system code is executed with
the instrumented JRE. The taints of messages are sent out by
the instrumented JNI methods, and stored in an intermediate
component named Taint Map. The other node receives taints
from Taint Map and reassigns them to the received messages.

The following sections illustrate how we design DisTA,
including the instrumentation level and tracking granularity
(Section III-A), the selection of methods for instrumentation
(Section III-B), and the instrumentation implementation de-
tails (Section III-C). At last, we introduce DisTA’s runtime
execution (Section III-D).

A. Instrumentation Level and Tracking Granularity

To perform inter-node taint tracking in distributed systems,
we need to instrument network communication methods. As
shown in Figure 1, we can instrument these methods at
different levels, e.g., distributed system code and JRE methods.
Instrumenting at the distributed system code level (e.g., Send-
Worker and RecvWorker in Figure 1) can make our approach
not applied for other systems, since different systems usually
use different network communication methods. Instrumenting
at JRE level can solve the problem. However, there are
hundreds of network communication methods in JRE. These
methods can adopt TCP and UDP communication, and TCP
communication can use different I/O stream classes, e.g.,
pure byte I/O, object I/O, buffered I/O, NIO and AIO. Every
I/O class has several even dozens of different I/O methods.
Instrumenting all these methods is an enormous task.

In DisTA, we instrument JNI methods, which are at the
bottom level among all JRE methods. All network communi-
cation methods in JRE must send / receive message to / from
OS through JNI methods, so DisTA can track taint flows in
different JRE methods by instrumenting limited JNI methods.
Moreover, the message data in most JNI methods are in the
type of the byte array, which gives us the opportunity to track
taint in the single byte level granularity.

B. Instrumented Methods

To find out which methods should be instrumented, we
inspect all JNI methods in Java source code (HotSpot Open-

1. native send(Data d);

2. native receive(Data d);

3. + send(Data d, Taint d_t) {

4. + Data wrappedData = serialize(d, d_t);

5. + send(wrappedPacket);

6. + }

7. + receive(Data d, Taint d_t){

8. + Data wrappedData = Data.emptyData();

9. + int ret = receive(wrappedData);

10. + deseralize(wrappedData, d, d_t);

11. + }

Fig. 6. A simplified illustration of instrumenting JNI method.

JDK 1.8), and further judge if they are used in network
communication. Generally, a network communication method
should have the word read / write or receive / send in its
name. Among these methods, some are specially designed for
file I/O, which are not our focus. We further check the method
information on Javadoc and exclude these methods.

As a result, we get 13 JNI methods in 5 classes. Two
methods in SocketInputStream and SocketOutputStream are
used for TCP communication. Three methods in PlainData-
gramSocketImpl are used for UDP communication. Eight
methods in FileDispacherImpl and DatagramDispatcherImpl
are used to implement NIO and AIO communication. Note
that, although FileDispatcherImpl looks like a file I/O specific
class, it is actually extended by SocketDispatcherImpl which
is used in NIO and AIO communication in Linux. Thus,
FileDispatcherImpl’s four methods are included.

C. Instrumentation Details

Our basic idea for instrumentation is simple and intuitive.
We add a wrapper method for each method. When it is called,
the wrapper is called instead. For senders, we combine the
message with its taint and send them out by the original
method. For receivers, we invoke the original method to
receive the message and then divide it into the data and taint.

Figure 6 shows a simplified example of the instrumentation.
send (Line 1) and receive (Line 2) are a pair of JNI methods.
Method send can send data d out of the node, and receive
can receive data and store it in the parameter d. When
these two methods are called, we replace them by our two
modified methods (Line 3 - 11). In the wrapper method
send, we serialize data d and its taint d t and wrap them
in wrappedData (Line 4). Then we send them out by the
original JNI method (Line 5). In receive, we first construct an
empty Data object wrappedData (Line 8). Then we call the
original JNI method receive to receive the message and store
it in wrappedData (Line 9). At last, we deserialize it and
assign the data and taint to the parameter d and d t.

Ideally, the type of message data in network communication
should be a byte or a byte array, so that we can track the
distinct taint of every single byte and make the tracking
precise. However, not all data types in JNI methods are as we
expected. Depending on the data type of the method parameter,
we categorize these methods into three types: stream oriented

1. class DatagramPacket {

2. byte[] data;

3. + Taints[] taints;

4. }

5. native send(DatagramPacket packet);

6. native receive0(DatagramPacket packet);

7. + send(DatagramPacket packet, Taint packet_t) {

8. + byte[] data = packet.getData();

9. + Taint[] taints = packet.getTaints();

10. + byte[] serialBytes = serialize(data, taints);

11. + DatagramPacket wrappedPacket =

new DatagramPacket(serialBytes);

12. + send(wrappedPacket);

13. + }

14. + receive0(DatagramPacket packet, Taint packet_t) {

15. + DatagramPacket wrappedPacket =

new DatagramPacket();

16. + receive0(wrappedPacket);

17. + packet.setData(wrappedPacket.getData());

18. + packet.setTaints(wrappedPacket.getTaints());

19. + }

Fig. 7. Instrumentation for packet oriented methods.

methods, packet oriented methods and direct buffer oriented
methods. They are instrumented in three different ways.

Type 1: Stream oriented methods. TCP message related
JNI methods are in this type. They use stream I/O methods to
read / write data. The message data in these methods is in the
type of byte array or the single byte. Thus, we can directly
use the instrumentation way shown in Figure 6 for them.

Type 2: Packet oriented methods. UDP message related
JNI methods belong to this type. They usually uses a packet
object to wrap the message data in. We must access into the
packet before serializing / deserializing the data and taint.

Figure 7 shows an example of instrumenting two UDP
methods send and receive0 in PlainDatagramSocketImpl. Line
1 - 4 shows DatagramPacket class, which stores the message
data in the field data. After instrumentation, we add a field
taints to store taints for every distinct byte data. Line 5 and
Line 6 are the original JNI methods. They use DatagramPacket
object rather than the byte array to store data. Line 7 - 13
shows the wrapper of send. First, we fetch out the data (Line 8)
and its taints (Line 9), and wrapped them in serialBytes. Then
we initiate a new packet object to carry the wrapped bytes
(Line 11) and send them out by the original JNI method (Line
12). Note that we do not directly replace packet’s data field by
serialized bytes, because packet may be used by the following
code. Changing its field may affect the execution semantics.
For the receiver method, we create a new DatagramPacket
object (Line 15) to receive the full bytes (Line 16), and then
deserialize them into the data and taints. At last, they are
placed in the fields of the original parameter object.

Type 3: Direct buffer oriented methods. This type of
methods most commonly occurs in NIO communication which
uses DirectBuffer to store the message data. DirectBuffer is a
special class that manages a memory block out of Java heap. It
does not directly store an object or bytes carrying the message
data, but the data’s address in the physical memory. When a

// IOUtil.java

int writeFromNativeBuffer(ByteBuffer bb) {

nd.write(fd, ((DirectBuffer)bb.address()), …);

}

// FileDispatcherImpl.java

native int write0(FileDescriptor fd, long address, …);

Fig. 8. Direct buffer oriented methods only provide the memory address of
data rather than the data itself and its taints.

TABLE I
PARTIAL INSTRUMENTED METHODS AND THEIR TYPES

Class Method Type
SocketInputStream socketRead0 1

SocketOutputStream socketWrite0 1

LinuxVirtualMachine read 1
write 1

PlainDatagramSocket
send 2

receive0 2
peek 1

DirectByteBuffer get 3
put 3

IOUtil writeFromNativeBuffer 3
readIntoNativeBuffer 3

WindowsAsynchronous- implRead 3
SocketChannelImpl implWrite 3

node sends out data by DirectBuffer, it directly accesses the
data by the memory address, rather than copying a heap object
to OS by network related native method. This helps improve
I/O efficiency in Java programs.

However, the use of DirectBuffer hinders us directly fetch-
ing the data and taints in the parameters of a JNI method
invocation. Taking the code in Figure 8 as the example, we
can only find a long format address in the native method
write0. Thus, the previous instrumentation ways cannot work
here. Then we have a look on the caller of the method,
i.e., writeFromNativeBuffer in the class IOUtil. Here is a
DirectBuffer object but still no available taint information,
because DirectBuffer does not store data objects as well as
taints associated with the data.

To solve this problem, we first modify DirectBuffer class.
We add a taint array field in DirectBuffer to store all taints of
the data, and modify every put / get method in the class, so
that when the developer writes / reads the data to / from the
memory, the associated taint can be stored to / fetched from
the added taint array field.

Second, we instrument all callers of direct buffer oriented
native methods such as wrtieFromNativeBuffer in Figure 8. It
is similar to what we do for packet oriented methods. For write
methods, we allocate a new larger DirectBuffer, and fetch the
data out from the original DirectBuffer. Then we serialize the
data with its taints stored in the added taint array field, and
write the serialized results into the new buffer. Finally, we
invoke the native method on the new buffer to send out the data
and taints. Correspondingly, we allocate a larger DirectBuffer
for read methods, and read the serialized data and taints by
the buffer. Then we deserialize and put them into the original
DirectBuffer object.

Finally, we instrument 23 methods in total. Table I shows
a portion.

D. DisTA Runtime

After instrumentation, taints can propagate in distributed
systems at run time. When a taint propagates within the single
node, we denote it as a local taint. When it is transferred
between nodes, it is a global taint. We design a component
named Taint Map to store and transfer all global taints. Taint
Map is an independent process which can communicate with
all nodes, and maintain a map structure to store all global
taints and their Global IDs.

Figure 9 shows how the Taint Map processes global taints.
There are two bytes on Node 1, i.e., b1 and b2, to be sent to
Node 2, while Node 2 only receives one byte data b1. Both b1
and b2 are tainted by t1. Along with b1, t1 must be transferred
to Node 2. The whole transfer process can be divided into 5
steps. 1 Node 1 sends the taint t1 to Taint Map and request
a Global ID. Taint Map allocates a unique number as Global
ID for every global taint, e.g., 1 for t1. 2 Node 1 receives
the Global ID, and store it in its local taint storage, which is
a tree that we introduced in Section II-B. Note that, since we
have got the Global ID for t1, and b2’s taint is also t1, Node
1 does not need to request a Global ID again if it sends b2
out later. 3 Node 1 serializes every data byte with its taint
into a byte array, and transfers it to Node2. Here we do not
directly serialize the taint, but put the Global ID after the data
byte and transfer it. 4 Node 2 receives the data and the taint’s
Global ID, and requests to Taint Map to get the taint. 5 Node
2 receives the taint, and store it in its local taint storage.

1) Taint Tag Design: Compared the taint tag structure
used by Phosphor, i.e., < ID, Tag > introduced in Sec-
tion II-B, we adds two additional fields, i.e., LocalID and
GlobalID. Thus, the taint tag of DisTA is a quad, i.e.,
< ID, Tag, LocalID,GlobalID >.
LocalID is used to solve the problem of tag conflict. In

distributed systems, different nodes can run the same code.
That means, when we set some variables in the system as
the taint source points, a same variable can be tainted with
the same tag value on different nodes. If a tag propagates to
another node and the node has already generated the same tag,
they can be in conflict. Take Figure 9 as the example. If Node2
generates an a tag before communicating with Node1, then
this tag will be in conflict with the a tag from Node1. If they
are not distinguished correctly, it will make the taint tracking
imprecise since we do not know where the taint is from. To
solve this problem, we add a field Local ID for every taint tag.
It consists of node’s IP and JVM’s process ID. Thus, nodes
are aware of where tags are generated and distinguish them
even when they have the same tag value.
GlobalID is used to mark every unique taint in the inter-

node taint tracking process. It is set as zero when a taint tag is
generated at one node, and assigned a unique positive integer
by Taint Map when transferred to another node.

2) Taint Map: We design Taint Map to solve two problems
in inter-node taint tracking: large bandwidth usage when

Node 1 Node 2

b1

t1

b2

t1
b1 b2 b1

b1

t1

1 t1

Local Taints Local Taints

Taint Map

① Request GID

② Store GID

③ Transfer

④ Request Taint

⑤ Store Taint

GID Global Taint

1 1 1

Fig. 9. Taints go through 5 steps in inter-node taint tracking.

repeatably transferring serialized taints, and mismatched se-
rialized taint length between senders and receivers.

Large bandwidth usage. A serialized taint with one tag
can be over 200 bytes. What’s worse, a taint can have multiple
tags. As the number of tags increases, the length of the byte
array increases linearly. The serialized bytes array can cause
far more than 200X bandwidth overhead.

Mismatched serialized taint length. In message-passing,
the receiver will allocate a fixed length empty byte array for
storing the data bytes received. However, the length of the
empty byte array does not always exactly equal the number of
bytes sent by the sender. As Figure 9 shows, Node1 sends two
bytes b1 and b2, while Node2 only receives b1. To receive the
serialized taint simultaneously, the length of the allocated byte
array must be enlarged. Note that the length of the serialized
taint is not fixed. Thus, we cannot simply enlarge the byte
array space by a fixed amount. It means that the receiver
probably cannot receive the full serialized taint bytes, which
can fail the following deserialization step.

With Taint Map and Global ID, we can transfer taints in a
fixed length byte array. Thus, we can enlarge the allocated byte
array on the receiver and do not need to worry about receiving
an incomplete taint. On the other hand, every node only needs
to communicate with Taint Map to transfer every global taint
for only one time, and nodes only transfer serialized Global
ID to each other. Thus, the bandwidth overhead caused by
transferring global taints is acceptable, which depends on the
length of the Global ID.

On the other hand, Taint Map may become bottleneck,
since it runs as a single-point component that can be accessed
by all nodes to request Global IDs for global taints. As the
number of the global taints increases, the requests to Taint
Map for allocating Global IDs also increase. The limit on the
throughput of Taint Map may cause performance degradation
in inter-node taint tracking. However, our evaluation results
in Section V-F shows that the performance degradation is
acceptable.

IV. IMPLEMENTATION

DisTA is implemented in 2,045 lines of code (LOC). Among
them, 1,591 LOC are instrumentation related code. Most of
them are ASM [28] instructions. As mentioned above, we

instrument 23 methods. That means every method requires
69 LOC for instrumentation on average. To perform runtime
instrumentation, we deploy the instrumentation code as a Java
agent [31] attached with the target system.

Taint Map is implemented in 202 LOC. It is a simple
map structure which can communicate with all nodes. In
practice, Taint Map can be replaced by other mature K-V store
systems such as ZooKeeper [12] and etcd [32] to improve its
performance. On the other hand, it can be improved by some
reliable designs, e.g., adding a standby node to handle with the
single point failure. In this work, we only make the simplest
implementation, since DisTA is designed for in-house analysis
and testing for now, but not for production.

Besides, we modify Phosphor in 252 LOC to implement
our global taint tag structure and support the inter-node taint
serialization / deserialization.

V. EVALUATION

Our evaluation addresses the following research questions:
RQ1: Is DisTA sound and precise in inter-node taint track-

ing?
RQ2: Is DisTA easy to use?
RQ3: How is DisTA’s performance overhead?
To answer the above questions, we implement 30 test cases

with different commonly used communication protocols and
APIs (Section V-A) as the micro benchmark, and collect
several network communication scenarios in 5 real-world
distributed systems (Section V-B) for evaluation.

A. Micro Benchmark

As shown in Table II, we implement 30 test cases for differ-
ent network communication APIs and protocols. All of them
are frequently used in Java network communication. Three
cases come from a third-party network application framework
Netty [33], and the others use JRE standard APIs. Among
them, JRE Socket has multiple test cases, because users can
invoke different I/O interfaces in different stream classes to
read / write different kinds of data. For example, writeObject
in class ObjectOutputStream is specially for writing an object
to the stream. Other communication ways do not have multiple
cases, since they only have the single I/O implementation.

TABLE II
MICRO BENCHMARK

Name Description # cases

JRE Socket JRE standard TCP 22
JRE Datagram JRE standard UDP 1
JRE SocketChannel JRE NIO TCP 1
JRE DatagramChannel JRE NIO UDP 1
JRE AsyncSocketChannel JRE AIO 1
JRE HTTP JRE HTTP 1
Netty Socket 3rd-party TCP 1
Netty DatagramSocket 3rd-party UDP 1
Netty HTTP 3rd-party HTTP 1

Total 30

Data1

send() receive()

send()receive()

check()

Node 1 Node 2

Data2Source point Source point

Sink point

Fig. 10. Taint tracking scenario for micro benchmark.

Workloads. We design the workloads for the micro bench-
mark as shown in Figure 10. First, Node1 sends Data to
Node2. Node2 receives it and combines it with another Data.
Then the combined data is sent back to Node1. Finally,
Node1 checks the received data by method check(). The data
transferred in network are specially designed for each test case.
Specifically, we control the size of total data around 10MB.
For JRE socket cases that use different stream methods to
read / write different kinds of data, the input data are also
different. They can be a large int array or an object with a
long text String field. For JRE Datagram, and channel type
protocols, i.e., JRE SocketChannel, JRE DatagramChannel and
three Netty protocols, they directly use DatagramPacket or
ByteBuffer to read / write data. We design the same data, i.e.,
a 10MB size byte array. For HTTP type protocols, i.e., JRE
HTTP and Netty HTTP, we design an HTML page containing
large amounts of text contents.

Taint tracking scenario. We set Data1 and Data2 on
Node1 and Node2 as source points, and the method check() as
the sink point. The check method is the same for all protocols,
while Data1 and Data2 are specifically designed. At the sink
point, DisTA should obtain two taints of Data1 and Data2.

B. Real-World Distributed Systems

As shown in Table III, we select 5 popular real-world dis-
tributed systems, i.e., ZooKeeper [12], MapReduce/Yarn [25],
ActiveMQ [26], RocketMQ [27] and HBase [10] as evaluation
subjects. These systems represent different kinds of distributed
systems: ZooKeeper for coordination systems, MapReduce/-
Yarn for computing frameworks, ActiveMQ and RocketMQ
for message middlewares, and HBase for databases. These

TABLE III
REAL-WORLD DISTRIBUTED SYSTEMS

System Workload
ZooKeeper Leader election
MapReduce/Yarn Execute Pi
ActiveMQ Message distribution
RocketMQ Message distribution
HBase+ZooKeeper Query data

TABLE IV
TAINT TRACKING SCENARIOS FOR SYSTEMS

Type System # Sources # Sinks
ZooKeeper 3 1

MapReduce/Yarn 1 1
Specific data ActiveMQ 1 1
trace (SDT) RocketMQ 1 1

HBase+ZooKeeper 1 1
ZooKeeper 18 347

MapReduce/Yarn 20 2,235
System I/O ActiveMQ 6 371

monitor (SIM) RocketMQ 9 408
HBase+ZooKeeper 35 1,166

systems use different communication protocols. ZooKeeper
uses JRE standard TCP APIs and Netty library. MapReduce/-
Yarn uses JRE NIO and Yarn RPC. ActiveMQ and RocketMQ
supports many kinds of protocols including standard TCP,
UDP, NIO, as well as HTTP/HTTPS, WebSocket and STOMP
[34] protocols. HBase uses standard JRE NIO and Google’s
protobuf RPC [35].

Workloads. We design one workload for each distributed
system. We select the leader election process for ZooKeeper,
a job to calculate the value of Pi for MapReduce, long
text message distribution for ActiveMQ and RocketMQ, and
getting data from a table for HBase. The 5 workloads are all
common ones in these systems, as shown in Column Workload
in Table III. Note that HBase’s workload must run within two
systems, i.e., HBase and ZooKeeper. Thus, this workload can
be considered a cross-system taint tracking scenario.

Taint tracking scenarios. As Table IV shows, we design
two types of taint tracking scenarios, i.e., specific data trace
(SDT) and system input/output monitor (SIM). SDT scenarios
are common in program debugging [4], [5]. It marks the
specific data such as a vote in the leader election as tainted,
to trace how it propagates in the system. In these scenarios,
the number of taints is usually small and determinate. SIM
scenarios are common in data leakage detection [24]. In these
scenarios, the DTA tool marks data input functions, e.g.,
reading from a configuration file, as source points, and data
output functions, e.g., log print statements, as sink points.
Compared with SDT scenarios, the taints number of SIM is
relatively large and indeterminate.

In SDT scenarios, we track important variables of the
workload. For ZooKeeper, we select variable Vote as source
point. During the leader election process, all nodes instantiate
lots of Vote objects, but we only select 3 variables which
are first transferred into the network. For MapReduce/Yarn,

// class FileTxnLog

while(txnFiles.hasNext()) {

zxid = txnFile.readZxid();

}

// class QuorumPeer

epoch = getEpoch(zxid);

// class FastLeaderElection

new ToSend(…,epoch,…);

Node 1

Node 2
// class FastLeaderElection

LOG.info(“Notification: …” +

“peerEpoch:”+n.peerEpoch);

<1, “zxid0”, Node1>
<2, “zxid1”, Node1>
<3, “zxid2”, Node1>

Taints generated at
the source point

<3, “zxid2”, Node1>

Taints checked at
the sink point

Fig. 11. A simplified taint tracking example in ZooKeeper.

we select ApplicationID of the job generated on the client
as the source point. For ActiveMQ, we select a TextMessage
variable representing the long text message as the source point.
RocketMQ is similar to ActiveMQ. We select a Message
variable. For HBase, we set a TableName variable as the
source. For sink points, we select the method checkLeader
as the sink of ZooKeeper. It is invoked on a follower when
the leader is selected. For other systems, since all cases are the
end-to-end request type, we set variables representing request
results or methods to get the request result as sink points. They
are getApplicationReport method in MapReduce/Yarn, an Ac-
tiveMQ’s Message variable and an RocketMQ’s MessageExt
variable received on the message consumer, and an HBase’s
Result variable containing the data rows.

For SIM scenarios, we uniformly set file reading methods as
source points for all systems. These files can be configuration
files or data files, which may contain sensitive data. Once the
method is invoked at runtime, we mark the return value as
tainted. We set LOG.info method as sink points for all systems,
and check if any log statement prints a tainted variable.

Cluster setting. For ZooKeeper, we deploy 1 node for
Leader and 2 nodes for Follower. For MapReduce/Yarn, we
deploy 1 node for ResourceManager, 1 node for NodeManager
and 1 node for Task Container. For ActiveMQ and RocketMQ,
we deploy them as three peer nodes. For HBase, we deploy
1 HMaster node and 2 HRegionServer nodes, and each node
is equipped with a ZooKeeper process. Except ZooKeeper, all
other systems have an extra node to run their clients.

C. Experimental Setting

For each node in Section V-A and Section V-B, we use a
virtual machine in VMware Workstation Pro 16.1.0 to run it.
Each VM is equipped with 2 CPU cores and 8GB memory.
All VMs run on a host machine which has Intel Core(TM)
i9-9900 CPU and 64GB of RAM.

D. Soundness and Precision

To evaluate the soundness and precision of the taint tracking,
for each case in Table II and Table III, we check at sink points
if any taint is dropped or appears unexpectedly.

We take the SIM scenario in ZooKeeper in Figure 11 as the
example to illustrate the checking process. When a ZooKeeper
node starts, it reads from existing transaction log files to get the
largest transaction ID. In the while loop, Node 1 reads three
files. Thus, three different taints are generated at this source
point. During the workload execution, DisTA finds that a log
print statement on Node 2 has checked a taint, which is the
taint tagged as zxid2 from Node 1. Then, we inspect code
to figure out two questions: Why zxid2 can propagate to this
sink point, and why other taints generated at the same source
point do not propagate to this sink point? We find that only the
transaction ID in the last file is assigned to the variable zxid,
and further assigned to epoch and sent to Node 2. Thus, only
the taint generated by the last file read method invocation can
propagate to Node 2, while others are only generated and never
propagated. For this sink point on Node 2, we can determine
that there are no unexpected taints.

For the micro benchmarks and SDT scenarios in real-world
distributed systems, we check every sink point, since the taint
number is small and the propagation process is clear. For SIM
scenarios, there are too many taints generated, and the taint
propagation is too complex. Thus, we only randomly select
a fraction of sink points to check. We observe that DisTA
can accurately track all taints at these sink points. Therefore,
we draw the conclusion for RQ1: DisTA is precise for inter-
node taint tracking, and sound for common communication
protocols.

E. Usability

We evaluate DisTA’s usability by check if it can track
taints at sink points without much extra instrumentation and
specification.

To run DisTA in distributed systems, we first need to
instrument JRE, which can be automatically performed by
DisTA, by using the following instruction: java -jar DisTA.jar
JAVA HOME jre-inst. To instrument distributed systems,
we can run java -jar DisTA.jar SYSTEM HOME, and
DisTA can instrument all class files and jar assembly files
in the distributed system directory SY STEM HOME. We
can also choose not to manually instrument the distributed
system code, since DisTA can automatically instrument unin-
strumented code at run time.

To run the instrumented system code on the instrumented
JRE, we only need to add two JVM flags to the origi-
nal Java execution command: -Xbootclasspath/a:DistTA.jar
to add DisTA runtime library to the classpath, and -
javaagent:DistTA.jar to automatically modify uninstru-
mented libraries. For example, we only modify 3 LOC in
ZooKeeper’s environment configuration script file zkEnv.sh to
configure DisTA.

JAVA="$INST_JAVA_HOME/bin/java"
SERVER_JVMFLAGS="-Xbootclasspath/a:DisTA.jar -

javaagent:DisTA.jar=taintSources=
$SOURCE_FILE,taintSinks=$SINK_FILE"

CLIENT_JVMFLAGS="-Xbootclasspath/a:DisTA.jar -
javaagent:DisTA.jar=taintSources=
$SOURCE_FILE,taintSinks=$SINK_FILE"

TABLE V
RUNTIME OVERHEAD FOR MICRO BENCHMARK

Case Original (ms) Phosphor DisTA
Time (ms) Overhead (X) Time (ms) Overhead (X)

JRE Socket-Best 3,644 7,532 2.07 8,932 2.45
JRE Socket-Worst 3,266 12,762 3.91 18,976 5.81
JRE Socket-Avg 4,119 10,391 2.52 16,833 4.09
JRE Datagram 7,532 25,811 3.43 30,540 4.05
JRE SocketChannel 8,410 25,000 2,97 27,644 3.29
JRE DatagramChannel 9,050 27,055 2.99 28,901 3.19
JRE AsyncSocketChannel 8,733 24,971 2.86 26,357 3.02
JRE HTTP 2,714 4,072 1.50 5,810 2.14
Netty Socket 5,196 12,813 2.47 17,402 3.35
Netty DatagramSocket 5,782 14,097 2.44 23,618 4.08
Netty HTTP 3,155 15,535 4.93 19,600 6.21

Average 4,706 12,599 2.62 18,341 3.95

TABLE VI
RUNTIME OVERHEAD FOR REAL-WORLD DISTRIBUTED SYSTEMS

System Original Phosphor-SDT DisTA-SDT Phosphor-SIM DisTA-SIM
(ms) Time (ms) Overhead Time (ms) Overhead Time (ms) Overhead Time (ms) Overhead

ZooKeeper 3,117 9,707 3.11 12,741 4.09 9,813 3.15 13,502 4.33
MapReduce/Yarn 28,824 108,199 3.75 108,770 3.77 115,449 4.01 115,974 4.02
ActiveMQ 4,065 19,100 4.70 20,311 5.00 19,535 4.81 20,599 5.07
RocketMQ 3,799 18,553 4.88 19,714 5.19 20,197 5.32 21,203 5.58
HBase+ZooKeeper 26,845 105,735 3.94 120,065 4.47 109,831 4.09 128,396 4.78

Average 13,330 52,259 3.92 56,320 4.23 54,965 4.12 59,935 4.76

At Line 1, we replace the Java environment by the instru-
mented JRE. Line 2 and 3 are JVM flags for ZooKeeper server
and client respectively. Note that we add two files here, i.e.,
the source and sink files, which contains the user specification
for taint source and sink points. They are specified in the form
of Java method descriptors. When a method is specified as a
taint source point, its return value is tainted. When a method
is specified as a taint sink point, we check if its parameters
are tainted before its method body execution.

On average, we modify 10 LOC in launch scripts for sys-
tems in Table III, and do not need to modify or inspect source
code in these distributed systems. Compared with DisTA, other
tools such as FlowDist [24] require much more efforts to work.
FlowDist instruments different APIs for different systems.
Furthermore, it requires users to perform instrumentation for
4 times and 3 different kinds of analysis. For example, users
must run FlowDist for 4 times to instrument the source / sink
points setting logic, method, branch and instruction level taint
propagation code respectively. This makes the taint tracking
process quite complicated.

Based on these results, we draw the following conclusion
for RQ2: DisTA can be easily applied on different distributed
systems.

F. Overhead

To evaluate the overhead of DisTA, we run each case three
times and record its execution time. At the first time, we run
the case without tracking any taints, i.e, the original execution.
Then, we run the case on Phosphor, i.e., only intra-node taint

tracking. Last, we run the case on DisTA, i.e., both intra-node
and inter-node taint tracking.

Note that we do not consider evaluating the network and
memory overhead. As introduced in Section III-D, DisTA
transfers a fixed length byte array (4 bytes in default) storing
Global ID for every data byte. Thus, DisTA should introduce
about 5X network overhead. For the memory aspect, DisTA
directly utilizes Phosphor’s taint store design. Thus, it should
introduce the similar memory overhead as Phosphor. Since
Phosphor has evaluated its memory overhead (1X - 8X, 2.7X
average), we do not evaluate it again.

Micro benchmark. The evaluation results for micro bench-
marks are shown in Table V. Note that JRE Socket consists
of 22 cases, so we list the best (JRE Socket-Best) and worst
(JRE Socket-Worst) scenarios as well as the average (JRE
Socket-Avg) values. Compared with the original execution
time (Column Phosphor/Time), DisTA causes 2.14X overhead
at best, and 6.21X at worst (Column DisTA/Overhead). It
seems a huge overhead. However, comparing with the 3.95X
overhead caused by DisTA (Column DisTA/Overhead) and
Phosphor’s 2.62X overhead (Column Phosphor/Overhead), we
find out the pure inter-node taint tracking does not bring in
much overhead.

Real-world distributed systems. The results are shown in
Table VI. Compared with results in the micro benchmark,
taint tracking in real-world distributed systems causes higher
overhead in both Phosphor (3.92X and 4.12X) and DisTA
(4.23X and 4.76X). We think the results are reasonable, since
real-world systems are much more complex. Compared with

the intra-node taint tracking, DisTA causes a relatively small
extra overhead in inter-node taint tracking. For SDT scenarios,
it causes 0.31X (4.23X - 3.92X). For SIM scenarios, it causes
0.64X (4.76X - 4.12X).

SDT vs SIM. By comparing the evaluation results in taint
tracking in SDT (Specific data trace) scenarios and SIM
(System input / output monitor) scenarios, we can figure out
the performance degradation caused by Taint Map. In SDT
scenarios, the overhead is 4.23X in average, while it is 4.76X
in SIM scenarios. Then, we compare the number of global
taints recorded in Taint Map in both kinds of scenarios. In SDT
scenarios, the minimum number of global taints is one, and
the maximum is six. In comparison, the minimum number of
global taints is 54, and the maximum is 327 in SMT scenarios.
We notice that the overhead does not increase significantly
with the number of global taints increases.

Based on the above results and analysis, we draw the con-
clusion for RQ3: DisTA introduces slight overhead comparing
to the intra-node taint tracking, and is scalable for multiple
taints.

VI. DISCUSSION

Support for specific JNI methods. In Section III-B, we
mainly consider standard network communication JNI meth-
ods in JRE. However, distributed system developers can design
their own native communication libraries and corresponding
JNI methods, in which the taint cannot be directly tracked
by DisTA. To support these methods, users can follow the
three instrumentation ways and extend our instrumentation
interfaces to instrument them.

Implicit flows handling. How to handle implicit flows
(control flows) is an important problem for taint tracking
tools. For DisTA, we only guarantee the correctness of taint
tracking in inter-node taint tracking, i.e., from the message
sending JNI method to the receiving JNI method. As to the
correctness of the taint propagation within the single node
from the source / sink points to the instrumented JNI methods,
it is guaranteed by the intra-node taint tracking tool Phosphor
[22]. Considering that Phosphor is still not perfect on implicit
flows handling, we declare that DisTA inherits the limitation
on Phosphor.

Comparison with other tools. We do not perform any
comparison experiment. We introduce three different taint
tracking tools in Section II-D. Taint-Exchange [23] is for x86
binaries, it cannot be applied to Java programs. Kakute [14] is
specific for Spark, and aims to the RDD tracking scenario. The
best comparison subject is FlowDist [24]. However, its static
analysis implementation is too complex to run. We failed to
reproduce its experiments.

Threats to validity. The main threats to our experiments
are related to the representativeness of our selected test cases.
We design a number of network communication scenarios
as our micro benchmark. These cases include the standard
JRE APIs and third-party communication libraries. All the
communication protocols and APIs in them are widely used
in Java ecosystem. For systems in Table III, all of them are

widely used and cover a diverse set of architectures, i.e.,
leader-follower and peer-to-peer, and network protocols, e.g.,
Netty, YarnRPC, and HTTP. Thus, we believe our selected
cases in both the micro benchmark and real-world distributed
systems are representative.

VII. RELATED WORKS

In this section, we discuss related works that are not
discussed in previous sections.

Static taint tracking tools. Static taint tracking is a
powerful approach for security tasks such as privacy leak
detection, because it can cover all possible paths in code
theoretically. Moreover, it has no impact on runtime perfor-
mance. Researchers have presented several static tools for
small scale programs. STILL [36] can detect exploit code in
web request. FlowDroid [37] can precisely detect data leaks
within Android applications. IccTA [38] extends FlowDroid to
detect privacy leaks between multiple components. However,
network communication in distributed systems is much more
complex and non-deterministic. The dynamic message data
and uncertain sending / receiving timing can make static
analysis imprecise and unsound.

Dynamic taint tracking tools in different platforms.
Dytan [16], libdft [29], TaintEraser [21], TaintPipe [39],
and NeuTaint [40] can track taints for C-based programs.
These tools do not consider taint propagation in network
communication. Thus, they cannot be applied for distributed
systems. Titian [41] is a prior work than Kakute [14] which
is also specifically designed for data tracking in Spark. It
is not portable for other systems. TaintDroid [2] customizes
Android’s specific Binder framework to track IPC messages
between applications. It is designed for Android platform, so
it cannot be applied to Java-based distributed systems, either.

VIII. CONCLUSION

Existing DTA tools cannot support inter-node taint tracking
for distributed systems, or are designed for specific distributed
systems and require specific modifications. We develop DisTA,
a generic dynamic taint tracking tool for Java-based distributed
systems. DisTA aims to be sound and precise in taint tracking,
and easy to use. It instruments common network communica-
tion modules in JRE at the JNI level, and tracks taints in the
single byte granularity. The experimental results on both the
micro benchmark and real-world distributed systems show that
DisTA achieves all its goals.

IX. ACKNOWLEDGE

We thank the anonymous reviewers and our shepherd,
Jun Xu, for their constructive suggestions. This work was
partially supported by National Natural Science Foundation
of China (62072444, 61732019), Frontier Science Project of
Chinese Academy of Sciences (QYZDJSSW-JSC036), and
Youth Innovation Promotion Association at Chinese Academy
of Sciences (2018142).

REFERENCES

[1] J. Newsome and D. X. Song, “Dynamic taint analysis: Automatic
detection, analysis, and signature generation of exploit attacks on
commodity software,” in Proceedings of the Network and Distributed
System Security Symposium (NDSS), 2005.

[2] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “TaintDroid: An information-
flow tracking system for realtime privacy monitoring on smartphones,”
ACM Transactions on Computer Systems (TOCS), vol. 32, no. 2, pp.
1–29, 2014.

[3] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek, “Improving
application security with data flow assertions,” in Proceedings of ACM
SIGOPS Symposium on Operating Systems Principles (SOSP), 2009, pp.
291–304.

[4] P. Dhoolia, S. Mani, V. S. Sinha, and S. Sinha, “Debugging model-
transformation failures using dynamic tainting,” in Proceedings of Eu-
ropean Conference on Object-Oriented Programming (ECOOP), 2010,
pp. 26–51.

[5] M. Ganai, D. Lee, and A. Gupta, “DTAM: Dynamic taint analysis
of multi-threaded programs for relevancy,” in Proceedings of ACM
SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE), 2012, pp. 1–11.

[6] T. R. Leek, G. Z. Baker, R. E. Brown, M. A. Zhivich, and R. Lipp-
mann, “Coverage maximization using dynamic taint tracing,” MAS-
SACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB, Tech.
Rep., 2007.

[7] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to
know about dynamic taint analysis and forward symbolic execution (but
might have been afraid to ask),” in Proceedings of IEEE Symposium on
Security and Privacy (SP), 2010, pp. 317–331.

[8] (2008) Apache hadoop mapreduce. [Online]. Avail-
able: https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/
hadoop-mapreduce-client-core/MapReduceTutorial.html

[9] (2015) Apache spark. [Online]. Available: https://spark.apache.org/
[10] (2007) Apache hbase. [Online]. Available: https://hbase.apache.org/
[11] (2016) Apache cassandra. [Online]. Available: https://cassandra.apache.

org/
[12] (2010) Apache zookeeper. [Online]. Available: https://zookeeper.apache.

org/
[13] D. Ongaro and J. Ousterhout, “In search of an understandable consen-

sus algorithm,” in Proceedings USENIX Annual Technical Conference
(ATC), 2014, pp. 305–319.

[14] J. Jiang, S. Zhao, D. Alsayed, Y. Wang, H. Cui, F. Liang, and Z. Gu,
“Kakute: A precise, unified information flow analysis system for big-
data security,” in Proceedings of Annual Computer Security Applications
Conference (ACSAC), 2017, pp. 79–90.

[15] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum,
“Understanding data lifetime via whole system simulation,” in USENIX
Security Symposium, 2004, pp. 321–336.

[16] J. Clause, W. Li, and A. Orso, “Dytan: A generic dynamic taint analysis
framework,” in Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA), 2007, pp. 196–206.

[17] J. Jung, A. Sheth, B. Greenstein, D. Wetherall, G. Maganis, and
T. Kohno, “Privacy oracle: A system for finding application leaks with
black box differential testing,” in Proceedings of the ACM Conference
on Computer and Communications Security (CCS), 2008, pp. 279–288.

[18] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking,” ACM SIGPLAN
Notices, vol. 39, no. 11, pp. 85–96, 2004.

[19] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A.
Blome, G. A. Reis, M. Vachharajani, and D. I. August, “RIFLE: An
architectural framework for user-centric information-flow security,” in
Proceedings of International Symposium on Microarchitecture (MICRO),
2004, pp. 243–254.

[20] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
Capturing system-wide information flow for malware detection and
analysis,” in Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2007, pp. 116–127.

[21] D. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall, “TaintEraser:
Protecting sensitive data leaks using application-level taint tracking,”
ACM SIGOPS Operating Systems Review, vol. 45, no. 1, pp. 142–154,
2011.

[22] J. Bell and G. Kaiser, “Phosphor: Illuminating dynamic data flow in
commodity jvms,” in Proceedings of ACM International Conference on
Object Oriented Programming Systems Languages Applications (OOP-
SLA), 2014, pp. 83–101.

[23] A. Zavou, G. Portokalidis, and A. D. Keromytis, “Taint-exchange:
A generic system for cross-process and cross-host taint tracking,” in
Proceedings of International Workshop on Security, 2011, pp. 113–128.

[24] X. Fu and H. Cai, “FlowDist: Multi-staged refinement-based dynamic
information flow analysis for distributed software systems,” in Proceed-
ings of the 30th USENIX Security Symposium (USENIX Security), 2021,
pp. 2093–2110.

[25] (2008) Apache hadoop yarn. [Online]. Available: https://hadoop.apache.
org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html/

[26] (2019) Apache activemq. [Online]. Available: https://activemq.apache.
org/

[27] (2012) RocketMQ. [Online]. Available: https://rocketmq.apache.org/
[28] (2002) ASM. [Online]. Available: https://asm.ow2.io/
[29] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis, “libdft:

Practical dynamic data flow tracking for commodity systems,” in Pro-
ceedings of ACM SIGPLAN/SIGOPS Conference on Virtual Execution
Environments (VEE), 2012, pp. 121–132.

[30] X. Fu and H. Cai, “A dynamic taint analyzer for distributed systems,” in
Proceedings of ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2019, pp. 1115–1119.

[31] (2020) Package java.lang.instrument. [Online]. Avail-
able: https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/
package-summary.html

[32] (2013) etcd. [Online]. Available: https://etcd.io/
[33] (2003) Netty project. [Online]. Available: https://netty.io/
[34] (2012) STOMP: The Simple Text Oriented Messaging Protocol.

[Online]. Available: https://stomp.github.io/
[35] (2008) Protocol buffers. [Online]. Available: https://developers.google.

com/protocol-buffers
[36] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu, “STILL: Exploit code detection

via static taint and initialization analyses,” in Proceedings of Annual
Computer Security Applications Conference (ACSAC), 2008, pp. 289–
298.

[37] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “FlowDroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in Proceedings of ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2014, pp. 259–269.

[38] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “Iccta: Detecting
inter-component privacy leaks in android apps,” in Proceedings of
IEEE/ACM International Conference on Software Engineering (ICSE),
2015, pp. 280–291.

[39] J. Ming, D. Wu, G. Xiao, J. Wang, and P. Liu, “Taintpipe: Pipelined
symbolic taint analysis,” in Proceedings of USENIX Security Symposium,
2015, pp. 65–80.

[40] D. She, Y. Chen, A. Shah, B. Ray, and S. Jana, “Neutaint: Efficient
dynamic taint analysis with neural networks,” in Proceedings of IEEE
Symposium on Security and Privacy (SP), 2020, pp. 1527–1543.

[41] M. Interlandi, K. Shah, S. D. Tetali, M. A. Gulzar, S. Yoo, M. Kim,
T. Millstein, and T. Condie, “Titian: Data provenance support in spark,”
vol. 9, no. 3, p. 216, 2015.

https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://spark.apache.org/
https://hbase.apache.org/
https://cassandra.apache.org/
https://cassandra.apache.org/
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html/
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html/
https://activemq.apache.org/
https://activemq.apache.org/
https://rocketmq.apache.org/
https://asm.ow2.io/
https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/package-summary.html
https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/package-summary.html
https://etcd.io/
https://netty.io/
https://stomp.github.io/
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers

	Introduction
	Background and Motivation
	Motivating Example
	Taint Tracking for Standalone Programs
	Limitations in Intra-node Taint Tracking
	Inter-node Taint Tracking

	DisTA Design
	Instrumentation Level and Tracking Granularity
	Instrumented Methods
	Instrumentation Details
	DisTA Runtime
	Taint Tag Design
	Taint Map

	Implementation
	Evaluation
	Micro Benchmark
	Real-World Distributed Systems
	Experimental Setting
	Soundness and Precision
	Usability
	Overhead

	Discussion
	Related works
	Conclusion
	Acknowledge
	References

