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Abstract—Stream clustering is an important data mining tech-
nique to capture the evolving patterns in real-time data streams.
Today’s data streams, e.g., IoT events and Web clicks, are
usually high-speed and contain dynamically-changing patterns.
Existing stream clustering algorithms usually follow an online-
offline paradigm with a one-record-at-a-time update model, which
was designed for running in a single machine. These stream
clustering algorithms, with this sequential update model, cannot
be efficiently parallelized and fail to deliver the required high
throughput for stream clustering.

In this paper, we present DistStream, a distributed framework
that can effectively scale out online-offline stream clustering al-
gorithms. To parallelize these algorithms for high throughput, we
develop a mini-batch update model with efficient parallelization
approaches. To maintain high clustering quality, DistStream’s
mini-batch update model preserves the update order in all
the computation steps during parallel execution, which can
reflect the recent changes for dynamically-changing streaming
data. We implement DistStream atop Spark Streaming, as well
as four representative stream clustering algorithms based on
DistStream. Our evaluation on three real-world datasets shows
that DistStream-based stream clustering algorithms can achieve
sublinear throughput gain and comparable (99%) clustering
quality with their single-machine counterparts.
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I. INTRODUCTION

Today, we are increasingly leveraging data mining tech-
niques to extract insights from real-time data streams created
by IoT sensors, Web clicks, etc. Stream clustering is a key
technique to capture the evolving patterns, e.g., network intru-
sion patterns and online shopping behavior patterns, through
grouping similar records into clusters continuously.

Different from batch-mode clustering, stream clustering
needs to process unbounded data streams in one pass with
limited memory capacity. Under these constraints, most
stream clustering algorithms adopt a two-phase online-offline
paradigm [11], [19], which keeps an up-to-date sketch of the
streaming data in memory during the online phase and com-
putes the final clusters offline when necessary. By leveraging
this online-offline paradigm, researchers have proposed more
than 20 stream clustering algorithms including CluStream [11],
DenStream [16], D-Stream [17], and ClusTree [24].
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These stream clustering algorithms leverage a one-record-
at-a-time update model that has strict sequential update con-
straint, i.e., a new record cannot be clustered until its previous
record has been processed. Thus, these algorithms are suitable
to work in a single machine, leading to low clustering through-
put. For example, CluStream’s throughput only achieves ∼5K
records per second on TCP connection stream in a single
machine [11]. However, today’s data streams are orders of
magnitude faster. For instance, the online shopping site Al-
ibaba needs to process 256K transactions per second [1], and a
leading Web company was hit by a DDoS attack at the peak of
292K requests per second [5]. Further, these data streams often
have dynamically-changing patterns, e.g., changing customer
shopping behaviors or evolving attack patterns.

Currently, there is not an effective approach for online-
offline stream clustering algorithms to achieve high throughput
and high clustering quality on dynamically-changing data
streams. Existing batch-mode distributed machine learning
frameworks, such as Spark MLlib [27] and Petuum [30], are
inadequate to support the unique characteristics of stream
clustering algorithms. Recently, researchers proposed several
approaches to implement stream clustering algorithms on
distributed stream processing systems [13], [23]. However,
these approaches are designed for a specific algorithm (i.e.,
CluStream) and cannot be extended to other algorithms like
DenStream [16] and D-Stream [17]. In addition, these ap-
proaches do not distinguish the data arrival orders and cannot
precisely reflect the latest changes for dynamically-changing
patterns, leading to degraded clustering quality.

In this paper, we propose a distributed framework Dist-
Stream to parallelize online-offline stream clustering algo-
rithms, with the goal of achieving both high throughput and
good clustering quality. We mainly address two challenges.

The first challenge is how to design an efficient up-
date model for stream clustering algorithms to achieve high
throughput. We design a mini-batch update model to overcome
the throughput inefficiency of one-record-at-a-time model, by
introducing a new batch-by-batch feedback loop and multiple
parallelization dimensions for the update steps. Through ana-
lyzing the latency and network communication, we judiciously
choose the most efficient dimension for parallelizing each step
of our mini-batch update model.



The second challenge is how to achieve good clustering
quality, comparable to that of one-record-at-a-time model.
Directly parallelizing the mini-batch model without distin-
guishing the data arrival orders will lead to low clustering
quality, because it fails to reflect the pattern changes in
data streams. To mitigate this problem, we design an order-
aware update mechanism in all update steps during parallel
execution. Further, we theoretically demonstrate that our order-
aware update mechanism can reflect the recent changes (over
unordered update mechanism) and mitigates the quality loss
associated with the mini-batch update model.

DistStream is implemented on top of Spark Streaming [31]
and exposes four high-level APIs for algorithm developers
to migrate and parallelize single-machine stream clustering
algorithms. We also implement four representative stream clus-
tering algorithms, i.e., CluStream, DenStream, D-Stream, and
ClusTree, based on DistStream for evaluation. The experiments
on three real-world datasets with different data distributions
show that our DistStream-based implementations can achieve
comparable clustering quality of 99% and sublinear throughput
gain of up to 13X (with 32 cores) to their single-machine
counterparts. The experiments also demonstrate the impor-
tance of our order-aware update mechanism—unordered mini-
batch implementations suffer from about 60% lower clustering
quality. In summary, we make the following key contributions.
• We design a mini-batch update model with efficient par-

allelization approaches for stream clustering algorithms to
overcome the scalability inefficiency of the traditional one-
record-at-a-time model.

• In our mini-batch update model, we design an order-
aware update mechanism and theoretically demonstrate its
importance in maintaining the clustering quality for the
dynamically-changing data streams.

• We implement our DistStream framework atop widely-
used Spark Streaming, as well as four representative algo-
rithms based on DistStream. The experiments on real-world
datasets show that DistStream-based implementations can
achieve sublinear throughput gain and comparable clustering
quality with their single-machine counterparts.

II. BACKGROUND

This section describes the online-offline paradigm and one-
record-at-a-time update model of stream clustering algorithms.

A. Online-offline paradigm

The objective of a clustering algorithm is to group a
set of d-dimensional data records {x1, x2, . . . , xm} into a
number of clusters C = {c1, c2, . . . , cn}, in which intra-cluster
records have high similarity and inter-cluster records have low
similarity. The similarity among records is typically measured
by distance functions such as Euclidean distance.

Different from batch-mode clustering algorithms [20], [27],
stream clustering algorithms process an unbounded sequence
of ordered data records that arrive in real time. Each data
record xi is associated with a timestamp ti, and stream
clustering algorithms incrementally update the clusters with
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Fig. 1. The online-offline paradigm with one-record-at-a-time update model.

the arrival of new records. The clusters C at time t represent
the clustering results of the records arriving before t, where
the recent records are assumed to be more important to the
clustering results than the older records. The clustering quality
is measured by the compactness of each cluster and how well
recent records have been grouped to the correct clusters.

To satisfy the latency and throughput requirements, stream
clustering algorithms are designed to process the streaming
records in one pass with limited memory capacity, and update
the clustering results as fast as possible. To fulfill these
requirements, most of stream clustering algorithms [19], such
as CluStream [11] and DenStream [16], adopt a two-phase
online-offline clustering paradigm, as shown in Figure 1. The
key idea is to keep an up-to-date sketch (i.e., micro-clusters)
of the streaming data in memory at online phase and compute
the final clusters (i.e., macro-clusters) offline when necessary.

Take the network intrusion pattern detection as an exam-
ple. The incoming TCP connection streams contain normal
connections and multiple types of attack connections with
varying distributions. To identify the evolving patterns, e.g.,
which attack types are emerging, dominating and disappearing,
CluStream [11] summarizes the connections into a number
of in-memory micro-clusters and constantly updates these
micro-clusters. This online update procedure may create new
micro-clusters for new types of attacks, merge micro-clusters
together for emerging attacks, and decay/delete micro-clusters
for vanishing attacks. To identify recent intrusion patterns
and adjust defense strategies accordingly, security analyst can
invoke offline clustering to obtain recent clustering results (i.e.,
macro-clusters). In this case, the clustering quality can be mea-
sured by the number of correctly clustered TCP connections.

Formally, each micro-cluster is a statistical structure denoted
as qi = {Si, Ti, Ni}, where Si represents the spatial locality,
i.e., the compactness of the records in qi. For example in
CluStream, Si is measured by two d-dimensional feature
vectors as (CF 2, CF 1), which represent the squared sum and
linear sum of the records in the micro-cluster qi, respectively.
The temporal locality Ti measures the temporal weight of the
records in the micro-cluster by favoring newer records. Micro-
clusters with low temporal locality will be deleted during
update. Ni is the number of records in qi. DenStream regards
the micro-clusters with high temporal localities as density-
connected micro-clusters, and groups them together to find
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arbitrary shapes of clusters. D-Stream partitions the feature
space into grids (i.e., micro-clusters) and groups the adjacent
grids with high Ti and large Ni as macro-clusters. ClusTree
organizes micro-clusters as a tree structure for better data
summarization and fast record insertion.

B. One-record-at-a-time update model

For the online phase as shown in Figure 1, current streaming
algorithms use a one-record-at-a-time update model to process
each incoming data record sequentially. For initialization,
stream clustering algorithms leverage batch-mode clustering
algorithms like K-means to generate n micro-clusters on user-
defined first m data records. Then, for each incoming record
xi, the algorithms decide whether to assign it to an existing
micro-cluster q based on spatial locality, i.e., the distance
between record xi and the centroid of each micro-cluster. If
xi falls within the maximum boundary (e.g., the radius) of q,
the algorithms update both the spatial and temporal locality of
q as q′ = λiq + ∆xi, where ∆xi is the spatial and temporal
increment of record xi such as ∆xi = (x2

i , t
2
i ), and λi denotes

a time decaying factor that controls the importance of newer
record over old record as β−∆ti (e.g., β = 1.2). Otherwise,
the algorithms create a new micro-cluster for record xi. Before
processing the next record, the algorithms merge the newly
created (or updated) micro-cluster with other micro-clusters
to form a new micro-cluster set Qt+1. This one-record-at-
a-time model can adapt to the dynamically-changing data
stream but cannot be efficiently parallelized due to its one-
by-one feedback loop, which is detailed in Section IV-A.
For the offline phase, the final clustering results can be
generated directly from the micro-clusters [19] using batch-
mode algorithms such as K-means and DBSCAN [20].

III. DISTSTREAM OVERVIEW

In this paper, we investigate the problem of how to design
a distributed framework to efficiently parallelize online-offline
stream clustering algorithms. Note that we focus on paral-
lelizing the online phase to achieve high throughput while
maintaining good clustering quality. We omit the discussion of
offline phase because it does not impose real-time requirement
and can be efficiently parallelized using existing batch-mode
implementations such as distributed K-means [27].

The architecture of DistStream is shown in Figure 2.
The core of DistStream is an order-aware mini-batch update
model (Section IV), which generates computation steps for the
implemented stream clustering algorithms. DistStream paral-
lelizes these computation steps using efficient parallelization
approaches (Section V), and launches Spark Streaming tasks
to perform the computation (Section VI). DistStream provides
APIs for algorithm developers to easily parallelize online-
offline stream clustering algorithms.

IV. ORDER-AWARE MINI-BATCH UPDATE MODEL

In this section, we present the key design principles of our
order-aware mini-batch update model. To improve throughput,
we leverage a relaxed batch-by-batch feedback loop, instead of
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Fig. 2. The architecture of DistStream.

the original one-by-one feedback loop. We also decouple the
update step into local and global update steps, and parallelize
the local update step to improve update throughput. To achieve
good clustering quality, we design an order-aware update
mechanism, i.e., preserving the update order of records and
micro-clusters in both update steps. We theoretically demon-
strate that order-aware update mechanism can reflect the recent
changes (over unordered update mechanism) and mitigate the
quality loss associated with the mini-batch update model.

A. Batch-by-batch feedback loop

As shown in Figure 1, existing stream clustering algorithms
use a one-record-at-a-time model with two sequential update
steps. When a new record xi arrives, the first step is to identify
one micro-cluster q that is closest to record xi. In the second
step, the closest micro-cluster q is updated and then merged
with all existing micro-clusters Qt through operations such
as merging or deletion. The updated micro-clusters Qt+1 are
then made available to handle the next record. This one-by-one
feedback loop limits the clustering throughput as new record
can not be clustered until its previous record is processed.

To address the throughput limitation of one-record-at-a-
time model, our key insight is to relax its strict sequential
update-feedback constraint, by introducing a new batch-by-
batch feedback loop. Specifically, we allow a batch of records
to be processed on the same, albeit stale, micro-clusters Qt and
update Qt at the end of each batch, as shown in Figure 3(a).
This batch-by-batch feedback loop is also denoted as mini-
batch update model, which introduces more parallelization
dimensions for us to improve the throughput of each step.
For example, in the first step of Figure 3(a), we can compute
the closest micro-cluster of {x1, x2, x3, x4} in parallel.

However, this mini-batch update model incurs three chal-
lenges. First, the update step needs to update a batch of new
records to the stale micro-clusters at a time, while leveraging
traditional one-by-one update suffers from low throughput.
We describe how our decoupled update design improves the
update throughput in Section IV-B. Second, it is challenging
to achieve comparable clustering quality to the one-record-at-
a-time model, given that all records in a mini-batch use stale
micro-clusters for computation. We describe how our order-
aware update mechanism addresses this staleness problem in
Section IV-C. The third challenge is how to select batch size
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Fig. 3. DistStream’s order-aware mini-batch update model and batch size selection.

since it is related to clustering quality and throughput. We
discuss this problem in Section IV-D.

B. Decoupling local and global update steps

By using mini-batch update model, the first step is to
compute the closest micro-clusters for all records within the
same mini-batch, e.g., {q3, q2, q3, q2} are the closest micro-
clusters of records {x1, x2, x3, x4} in Figure 3(a). The second
step is to update these chosen micro-clusters together with
existing micro-clusters. Following the update step of one-
record-at-a-time model, i.e., updating each chosen micro-
cluster and immediately merging it with the existing micro-
clusters, suffers from low throughput.

To improve the update throughput, our key idea is to
decouple the update step to two independent sub-steps, i.e., a
parallel local update step and a global update step. The local
update step only updates the chosen micro-clusters, by adding
the increments of records to them. As different micro-clusters
can be independently updated, we can parallelize local update
step using model-based parallelism as described in Section
V-B. The next global update step performs global operations,
such as merging these updated/newly created micro-clusters
with existing micro-clusters, to reflect the data stream changes.
We run global update step in a single node, because this
step needs to collect all the updated micro-clusters together to
perform merging/deletion operations. To reduce the computa-
tion latency, we optimize this step by pre-merging the newly
created micro-clusters as described in Section V-C.

C. Order-aware update mechanism

In this section, we describe how we enforce the order-
aware update in both local and global update steps to achieve
good clustering quality as that of the one-record-at-a-time
model. Our key insight is to reflect the impacts of records
on clustering results based on their arrival orders.

1) Order-aware local update: To adhere to the same update
principle of one-record-at-a-time model, we design an order-
aware local update step. In this step, records that map to the
same micro-cluster are updated in the same order as their
arrivals. As shown in Figure 3(a), for each record xi and
its closest micro-cluster q, we compute xi’s increment ∆xi
towards q and then update q. If record xi arrives before
record xj and both identify micro-cluster q as the closest,
we will insert xi to q before xj . This is to guarantee that
each record’s increment is correctly decayed and added to its

closest micro-cluster according to its arrival order. As a result,
the record’s impact on the updated micro-clusters is consistent
with that of the one-record-at-a-time model, yielding similar
update effects.

Next, we provide a theoretical analysis that demonstrates
the importance of update order by comparing to an unordered
mini-batch update model [13]. Empirical comparisons between
these two update models are presented in Section VII-B.

Importance of update ordering. Let us denote a stream of
records as {x1, x2, . . .}. Because the order of records only
matters when records map to the same micro-cluster, we
assume two records that map to the closest micro-cluster q
arrive as {. . . , xi, . . . , xk, . . .}. Without loss of generality, we
compare the impact of ∆xi and ∆xk (where i < k) on the
micro-cluster q when updating in arrival order and in the
reverse order of {. . . , xk, . . . , xi, . . .}.

First, when updating in the order {xi, xk} based on an
update function as qnew = λiq + ∆xi, we have new micro-
cluster q′→ as:

q′→ = λk(λiq + ∆xi) + ∆xk = λkλiq + λk∆xi + ∆xk,

where ∆xi and ∆xk represent the spatial and temporal in-
crements of xi and xk towards micro-cluster q; λi and λk
represent the decaying factor for record xi and xk, respec-
tively. The decaying factor λi = β−∆ti is a function of ∆ti
that denotes the time interval between xi and the previous
record that was updated to q. Since β is a constant and β ≥ 1,
we have λ ≤ 1.

We can then quantify the impact of data record xk (the most
recently updated data) on micro-cluster q′→ as:

Impact→j =

[
∆xk
q′→

]
j

=

[
∆xk

λkλiq + λk∆xi + ∆xk

]
j

.

Since ∆xk and q′→ are vectors, we use
[

∆xk

q′→

]
j

to quantify

the impact of xk on q′→ at the j-th dimension. When updating
in the reverse order, the new micro-cluster q′← can be repre-
sented as:

q′← = λi(λkq + ∆xk) + ∆xi = λiλkq + λi∆xk + ∆xi.

Similarly, we can then quantify the impact of data record
xk on micro-cluster q′← as:

Impact←j =

[
λi∆xk
q′←

]
j

=

[
∆xk

λkq + ∆xk + ∆xi

λi

]
j

.
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The reason we use λi∆xk instead of ∆xk is that record
xk’s increment ∆xk has been decayed by λi after updating
the next record xi to q′←. Further, because we have λi ≤ 1
and λk ≤ 1, we have λkλiq ≤ λkq and λk∆xi ≤ ∆xi

λi
. By

substituting these inequalities, we then have:

Impact→j ≥ Impact←j .

That is, for a given record, updating it in different orders
leads to different impacts on the updated micro-cluster. This
necessitates the need for ensuring update order in mini-batch
model, in order to match with the update principle of one-
record-at-a-time model and catch up with the dynamically
changing data distribution.

2) Order-aware global update: We design an order-aware
global update step, in which each micro-cluster is updated
based on its created/updated time. In detail, the global update
step needs to merge a set of newly created/updated micro-
clusters {q′i} with the old ones Qt. Since micro-cluster op-
erations such as deletion and merging are irreversible (e.g.,
deleted micro-clusters cannot be recovered), it is important
to perform these operations on micro-clusters by the order of
their updated/created time. If we were to process these micro-
clusters out-of-order, we may delete important micro-clusters
that reflect the current data pattern. For example, suppose
{q′1, q′2} are two newly created micro-clusters and q′1 was
created before q′2. The anticipated update outcome towards the
overall micro-clusters is to incorporate both q′1 and q′2, or at
least q′2. However, if updating with the reverse order {q′2, q′1},
the overall micro-clusters may only include q′1 but not q′2—
when q′2 is merged into an older micro-cluster that is later
deleted due to its lower temporal locality.

By preserving the update order in local and global update
steps, our approach is more resilient to the clustering quality
loss introduced by the stale micro-clusters. Concretely, as
the first step operates on stale micro-clusters, some of the
chosen micro-clusters are not necessarily the closest ones,
referred to as non-optimal micro-clusters. As such, the local
update step might operate on some non-optimal micro-clusters.
However, since the global update step has a global view of all
the existing micro-clusters, it can mitigate this problem by
merging non-optimal micro-clusters with existing ones. For
example, record x4 in Figure 3(a) is mapped to a non-optimal
micro-cluster q2 even though the true closest micro-cluster is
q3. In cases when the optimal micro-cluster q3 and non-optimal
micro-cluster q2 come from the same natural cluster, they tend
to have small distance. Therefore, q2 and q3 could be merged
in global update step.

D. Determining batch size

To determine the appropriate batch size, we first need to
understand its impact on clustering quality. When using mini-
batch update model, the clustering quality of micro-clusters Qt
is determined by the increments of records in the batch and
the previous micro-clusters Qt−1. Based on our order-aware
update mechanism, we can show that each record’s increment
towards the micro-clusters does not vary with batch sizes.

(a) Update with batch size = 2s. (b) Update with batch size = 4s.

Fig. 4. The record xi’s increment towards the micro-clusters Qt4 does not
vary with batch sizes, supposing each record arrives at 1 second interval.

When using small batch size as shown in Figure 4(a), record
x1’s increment towards Qt2 (i.e., ∆x1) will be decayed by λ2

when updating x2 to Qt2 with Qt2 = λ2(λ1Qt0 +∆x1)+∆x2

in the first batch. Likewise, in the second batch, Qt2 will
be decayed twice to be λ4λ3(Qt2) when updating x3 and
x4 to Qt4 . Because x1 is absorbed in Qt2 , x1’s increment
towards Qt4 is decayed accordingly as λ4λ3(λ2∆x1), which
equals to record x1’s increment towards Qt4 when using large
batch size as shown in Figure 4(b). Therefore, batch size has
limited impact on clustering quality which is also empirically
evaluated in Section VII-B2.

When using large batch size, the record’s increment tends
to be decayed to a small value. As shown in Figure 4(b), x1’s
increment towards Qt4 (i.e., λ4λ3λ2∆x1 = β−(t4−t1)∆x1, β
is a constant) will become a small value, if ∆t = t4 − t1
is very large as shown in Figure 3(b). Small increments can
be problematic as they make the updated micro-clusters such
as Qt4 only reflect the latest records, but omit the interme-
diate clustering results like Qt2 . To mitigate this problem,
one potential way is to set the batch size by bounding the
decaying factor, in order to control the impact of records on
clustering. Concretely, given a user-defined threshold α, we
have β−∆t > α which leads to a maximum batch size of
logβ

1
α . For example, the maximum batch size is about 25

seconds when α = 0.01 and β = 1.2.
Lastly, we empirically study the batch size impact on clus-

tering throughput in Section VII-D3 and discuss the potential
ways to select best batch size for improving throughput.

V. PARALLELIZING ORDER-AWARE MINI-BATCH MODEL

In this section, we describe approaches to parallelize order-
aware mini-batch update model for high clustering throughput
and good clustering quality. We first describe each com-
putation step and analyze the computation dependency. We
then select the most efficient parallelization approach for the
first two steps, based on theoretical analysis of computational
latency and network communication of two potential paral-
lelism dimensions. Specifically, we consider record-based and
model-based parallelisms based on our observations that the
computation for each data record and each micro-cluster is in-
dependent, respectively. Finally we explain our optimizations
for performing global update step in a single machine. Below
we use task to denote the computation unit that can run in
parallel in different machines.
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Fig. 5. The parallelized order-aware mini-batch update model.

A. Finding the closest micro-cluster: record-based parallelism
The first step is to assign each incoming record within

the same mini-batch to its closest micro-cluster. For each
record xi, this step computes its distance with the centroid
of each micro-cluster, selects the closest micro-cluster q, and
performs outlier check by verifying whether xi falls within
the maximum boundary of micro-cluster q.

We choose the record-based parallelism, as shown in Fig-
ure 5, for more efficiently finding the closest micro-cluster.
Specifically, the incoming records are assigned to different
tasks and each task performs the distance computation and
verification of each record locally. To do so, we first broadcast
(copy) the entire micro-cluster set Qt = {qi}ni=1 to each task
at the beginning of each batch-by-batch feedback loop. We
then assign incoming records with different timestamps into
different tasks in a round-robin way. This is to facilitate the
goal of maintaining the relative orders between the input data
records and the output micro-cluster results. For each assigned
record xi, the task computes distances between xi and all the
micro-clusters {qi}ni=1, selects and verifies the closest micro-
cluster qj , and finally outputs 〈xi, qj〉.
Comparison with model-based parallelism: We can also
parallelize this step by dividing micro-clusters into different
tasks, and perform distance computation on each subset of
micro-clusters in parallel, namely model-based parallelism.
However, this approach requires an additional stage to aggre-
gate partial computation results from all parallel tasks, because
each task only computes the distance between a record and a
part of the micro-clusters. Therefore, this approach requires
additional inter-task communication, and thus leads to higher
computation latency than record-based parallelism. Moreover,
record-based parallelism provides higher flexibility in varying
the parallelism degree. Intuitively, record-based parallelism
is only bounded by the batch size m, while model-based is
limited by the number of micro-clusters n (n < m).

B. Locally updating the closest micro-cluster: model-based
parallelism

After finding the closest micro-clusters of the incoming
records in a batch, the next step is to update these micro-

clusters locally. Formally, this local update step computes the
increment of each record xi towards its closest micro-cluster q
as ∆xi, and update q to q′ with q′ = λq+ ∆xi. This function
leverages the additivity property of the micro-cluster, and the
decaying factor λ controls the importance of newer records
over old records. As discussed in Section IV-C, it is important
to enforce the local update order based on the arrival order of
the records, for maintaining comparable clustering quality. If
the incoming record is identified as an outlier record, a new
micro-cluster qo is created for it.

We select model-based parallelism, because it strictly keeps
the update sequence and outperforms record-based paral-
lelism in throughput. Concretely, we divide the closest micro-
clusters of incoming records into different tasks and up-
date each micro-cluster in parallel. As shown in Figure 5,
the output results of the first step (i.e., records with their
closest micro-clusters) are grouped by the micro-cluster id
as {qj , [xa, xb, . . . xk]}nj=1 and then distributed into different
tasks. Each task first sorts the absorbed records [xa, xb, . . . xk]
of each micro-cluster qj based on the timestamps to enforce
the update order. Then, it computes each record’s increment
∆xi and updates qj to q′j by q′j = λqj + ∆xi iteratively, one
record at a time. Finally, the task outputs the updated micro-
cluster q′j for the next global update step.

Comparison with record-based parallelism: We choose to
parallelize the computation in this step using model-based
parallelism instead of record-based parallelism for two key
reasons. First, model-based parallelism allows us to strictly
keep the update order with minimal efforts. On the contrary,
record-based parallelism not only breaks the sequential update
constraint by updating the micro-clusters of a set of records
in parallel, but also requires access to carefully designed
function for merging these partial results. Second, model-
based parallelism has lower computation latency and network
communication. In model-based parallelism, the task computes
record increment and updates each micro-cluster locally. On
the contrary, record-based parallelism requires additional stage
(tasks) to merge the partially updated micro-clusters and thus
incurs additional intra-task communication.
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C. Globally updating all the micro-clusters: optimized

The global update step needs to merge a set of newly
created/updated micro-clusters with existing micro-clusters.
The first step is to decay the old micro-clusters that are
not updated during the local update step to decrease their
importance. The second step is to accommodate newly created
micro-clusters, by deleting as many outdated micro-clusters as
possible and merging any of the two closest micro-clusters.

We choose to perform global update step in a single
powerful node for two reasons. First, we need to collect
newly created/updated micro-clusters together to find the old
micro-clusters to decay and perform the deletion/merging
operations. Second, the number of micro-clusters n is often
much smaller than that of the incoming records m. Thus, the
global update step has low latency, except when there are many
newly created micro-clusters. More newly created (i.e., outlier)
micro-clusters means that we need to perform more operations
to find two closest micro-clusters for merging. To reduce this
computation latency, we perform a pre-merge optimization
operation on outlier micro-clusters by letting current outlier
micro-cluster (e.g., qo2 in Figure 5) merge with the previously
created outlier micro-clusters (e.g., qo1). The key intuition is
that many outlier micro-clusters are from the same new cluster
when data distribution is evolving to this new cluster. Thus,
this pre-merge operation can reduce the number of outlier
micro-clusters as well as the computation latency.

VI. DISTSTREAM IMPLEMENTATION

We have implemented DistStream as a distributed frame-
work for parallelizing online-offline stream clustering algo-
rithms. We choose to build DistStream atop Spark Stream-
ing [31] instead of Flink [2] and Storm [3], because Spark
Streaming supports dividing data streams into mini-batches
and aggregating results of parallel tasks at the end of each
batch. These features facilitate our implementation of the
batch-by-batch feedback and global update step. Concretely,
we leverage existing Spark Streaming operators such as
window(), map(), groupByKey(), and sort() to implement our
order-aware mini-batch update model.

DistStream exposes four APIs, including micro-cluster rep-
resentation, distance computation, local update, and global
update, which abstract the computational flow of distributed
stream clustering algorithms. These APIs allow algorithm
developers to implement any stream clustering algorithms that
comply with the online-offline update paradigm, because such
algorithms only differ in their micro-cluster representations
and micro-cluster update functions [19].

We have implemented four representative stream cluster-
ing algorithms atop DistStream, namely CluStream, Den-
Stream, D-Stream, ClusTree. For instance, to implement the
partition-based algorithm CluStream and the density-based al-
gorithm DenStream, we define micro-cluster representations as
(
∑n
i=1 x

2
i ,
∑n
i=1 xi,

∑n
i=1 t

2
i ,
∑n
i=1 ti) for CluStream and as

(
∑n
i=1 wix

2
i ,
∑n
i=1 wixi) for DenStream, respectively. Here,

wi is the temporal weight of record xi. For both algorithms,
we use Euclidean distance function for distance computation.

We define the local update functions for CluStream and Den-
Stream as ∆xi = (x2

i , xi, t
2
i , ti); λi = 1 and ∆xi = (x2

i , xi);
λi = β−∆ti < 1, respectively. Finally, for the global update,
we use two different temporal thresholds for deleting older
micro-clusters.

DistStream uses Spark Streaming runtime to distribute and
schedule DistStream tasks to a cluster of machines. DistStream
leverages Spark Streaming’s parallel recovery mechanism for
fault tolerance [31]. DistStream executes the global update step
using Spark Streaming driver in a single machine.

VII. EVALUATION

In this section, we evaluate the clustering quality and perfor-
mance of stream clustering algorithms implemented on Dist-
Stream, and compare with that implemented on one-record-at-
a-time model and unordered mini-batch update model.

We select four representative stream clustering algorithms,
namely CluStream, DenStream, D-Stream and ClusTree, and
implement them atop DistStream. For all four algorithms,
we implement two sets of baselines: the first baselines (with
prefix MOA-) are implemented using the single-machine MOA
library [15], and the second baselines (with prefix unordered-)
are implemented based on an existing work [13] for CluStream
and based on DistStream for the other three algorithms. We
configure each algorithm with default values from original
papers [11], [16]. For example in CluStream, the number of
micro-clusters is set to ten times of the real cluster numbers.
In DenStream, we set β = 20.25 ≈ 1.2 and µ = 10, where µ
denotes radius threshold. Given that we observe similar results
for all four algorithms and consider space limitation, we only
detail the results of CluStream and DenStream from Section
VII-B to VII-D, and summarize the results of D-Stream and
ClusTree in Section VII-E.

A. Experimental setup

We perform the evaluation on a local cluster of ten nodes.
DistStream runs on a master-slave architecture with one master
and eight workers. To generate the data stream, the last node
runs a Apache Kafka producer that reads data records from
local disk sequentially and outputs the records at a user-defined
rate. DistStream pulls the data stream in mini-batches and
distributes the data stream into eight workers. Each worker
has 4 physical cores and 64GB memory, and we configure
each DistStream task with a physical core and 8GB memory.
Therefore, the maximum parallelism degree (i.e., the number
of parallel tasks) is thirty-two. We use Spark 2.4.0 standalone
version with Hadoop HDFS 2.7.4 and Apache Kafka 1.1.0,
running on Ubuntu 16.04 to perform all the experiments.

We choose three real-world datasets that are widely used
for evaluating stream clustering algorithms [11], [16], [22],
as shown in Table I. These datasets have different data
distributions and feature dimensions, making them ideal for
studying clustering quality. We convert each dataset to a data
stream through first setting the timestamp for each record and
then streaming them in chronological order. We use the cluster
labels as the ground truth for clustering quality measurement.
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TABLE I
THE CHARACTERISTICS OF THE THREE DATASETS.

Dataset #Records #Used features #Clusters (a% b% c%)
KDD-99 [7] 494,021 34 23 (57%, 22%, 20%)
CoverType [4] 581,012 54 7 (49%, 36%, 6%)
KDD-98 [6] 95,412 315 5 (95%, 1.5%, 1.4%)

* We normalize each feature of the three datasets to have zero mean and
unit variance, to avoid biasing any features [21]. (a%, b%, c%) denotes
the record percentages of the three largest real clusters.

(1) KDD-99 is a network intrusion detection dataset from
KDD Cup 1999 [7], describing the dynamically changing TCP
connections in a network attack environment in MIT. This
dataset forms 23 clusters, including one normal connection and
22 different attack types such as buffer overflow and rootkit.

(2) CoverType is a cartographic dataset, describing forest
areas with different elevations in Colorado [4]. These records
have seven clusters that each represents one forest cover type.

(3) KDD-98 is a charitable donation dataset from KDD Cup
1998, describing people’s response to the donation promotion
mailing from a not-for-profit organization [6]. We group the
records into five clusters based on donation amount, ranging
from [$0], ($0, $10], ($10, $15], ($15, $20], and ($20, +∞).

For performance and scalability evaluation, we prepare a
larger dataset by instructing Kafka to read from the same
dataset ten times. Finally, we construct three larger datasets,
namely large-KDD99, large-CoverType, and large-KDD98.

B. Clustering quality comparison

1) Methodology: We use standard Clustering Mapping
Measure (CMM) criterion [25] to measure the stream clus-
tering quality, because it is more accurate than batch-oriented
metrics such as SSQ, Purity, and F-measure [25], [19]. CMM
does so by decaying the weights of aging records and pe-
nalizing three common clustering errors caused by evolving
clusters, namely missed records, misplaced records, and noise
records. CMM normalizes these errors as well as the difference
between clustering results and ground truth to a value between
0 and 1, where larger value denotes higher clustering quality.

For each dataset, we stream the data records at a rate of 1K
records/s. To fairly compare with MOA-based single machine
implementations, we run all distributed implementations in
a single machine with parallelism degree of one. We set
the batch size to be 10 seconds and calculate the CMM
values at the end of each batch using the clustering results
generated offline. We compute the CMM values of MOA-
based algorithms at the same interval.

2) Clustering quality results: Figure 6 plots the normalized
CMM values along the entire data stream, for all the algorithm
implementations on the three datasets. The normalized CMM
values are raw CMM values divided by that achieved by corre-
sponding MOA-based implementations. Thus, the normalized
CMM values of MOA-based implementations are always 1.0.

For both CluStream and DenStream algorithms, our Dist-
Stream-based implementations achieve comparable (average
99%) clustering quality to the MOA-based ones on all three

datasets. Specifically, the achieved clustering quality difference
between DistStream-CluStream (DistStream-DenStream) and
MOA-CluStream (MOA-DenStream) is 1.1% (0.3%) on aver-
age. In contrast, both unordered-CluStream and unordered-
DenStream suffer from up to 60% lower clustering quality
than MOA-based and DistStream-based implementations.

The clustering quality gaps between unordered and Dist-
Stream-based implementations suggest the importance of
maintaining update order in mini-batch update model. For
KDD-99 and CoverType datasets, unordered implementations
suffer from significantly lower clustering quality. We analyze
these clustering quality differences and find that the number of
missed records directly impact CMM values. In particular, for
KDD-99 and CoverType datasets, unordered implementations
cause on average 2.6X and 1.8X more missed records than
that of our order-aware implementations. The reason is that
unordered implementations mislabel 1.5-3.2X more incoming
records to be outliers than that of our order-aware implemen-
tations. The root cause is that unordered mini-batch model
fails to favor recent records, making the updated micro-clusters
cannot capture the recent data patterns. Further, unordered
implementations suffer from unpredictable (highly fluctuating)
clustering quality, because the data records within a mini-batch
have random impacts on the updated micro-clusters.

For KDD-98 dataset, the clustering quality differences be-
tween unordered and our order-aware implementations are
less obvious (up to 11%). The number of missed records of
unordered implementations is also much lower (up to 6%).
The key reason is that KDD-98 dataset is more stable than
KDD-99 and CoverType datasets. Here, a dataset is stable if
its data distribution has small change over time. For KDD-
98, this translates to that 95% of its data records belong to
a long-standing dominating cluster. In this case, most of the
updated micro-clusters map to the dominating cluster, reducing
the probability of mislabeling outliers. This reveals that the
update order exerts higher impacts on clustering quality for
datasets with more dynamically changing distributions.

Next, we repeat the experiments for different batch sizes,
including smaller batch size (5s) and larger batch sizes (15s to
30s with 5s interval). We observe on average 2.79% clustering
quality differences between DistStream-based and MOA-based
implementations, for all three datasets. This suggests that
the batch size has limited impact on clustering quality when
using order-aware mini-batch update model. The reason is that
the records’ increments, which directly impact the clustering
quality, will stay the same with different batch sizes, as long
as the update order is maintained. More theoretical analysis
can be found in Section IV-D.

Summary: DistStream-based implementations achieve
comparable (average 99%) clustering quality with MOA-based
counterparts, while unordered ones suffer from up to 60%
lower clustering quality. We also identify that more stable
datasets are less sensitive to update order. Further, batch
sizes have limited impact (average 2.79% clustering quality
difference) on our order-aware mini-batch update model.
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(c) CluStream on KDD-98
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(f) DenStream on KDD-98

Fig. 6. The clustering quality of CluStream and DenStream algorithms on different datasets using different update models.
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Fig. 7. Throughput of CluStream and DenStream in a single machine. The
per record latency is the inverse of the throughput.

C. Performance comparison in a single machine

Since MOA library only provides single-machine imple-
mentations, we compare the throughput of MOA-, unordered-,
and DistStream-based implementations in a single machine,
i.e., one task with one physical core and 8GB RAM.

1) Methodology: For stress throughput test, we measure
and use the Kafka’s maximum stable streaming rates on all
three large datasets, i.e., 100K/s on the low dimensional
large-KDD99 and large-CoverType, and 10K/s on the high
dimensional large-KDD98. Further, to factor out the network
overhead, we co-locate all the data records with the task. We
also configure the batch size to be 10 seconds for both un-
ordered and DistStream-based implementations. We calculate
the average throughput by dividing total data records by the
total processing time, and calculate per record latency as the
inverse of the throughput. We repeat each experiment five
times and report the average throughput.

2) Performance results: Figure 7 illustrates the throughput
of three implementations of CluStream and DenStream on

three large datasets. Compared to MOA-based implementa-
tions, mini-batch based implementations have an average of
10.6% lower throughput. This performance difference can be
attributed to additional works that are associated with mini-
batch based implementations, such as starting, serializing/de-
serializing and scheduling tasks.

Next, compared to unordered implementations, our order-
aware implementations have on average 1.3X higher through-
put, across all algorithm-dataset combinations. Intuitively,
DistStream-based implementations should incur higher pro-
cessing latency than unordered implementations due to addi-
tional sorting overhead. However, we observe that this sorting
overhead is offset by the unordered implementations’ tendency
to generate and handle more outliers (as described in Section
VII-B2), which leads to about 12µs per record latency.

Summary: Compared to MOA-based implementations,
mini-batch based implementations have an average of 10.6%
lower throughput. Such overhead is attributed to system over-
head such as starting, serializing and scheduling tasks. In addi-
tion, DistStream-based implementations outperform unordered
ones because of less outlier micro-clusters to process in global
update step, justifying our order-aware design choice.

D. Scalability

This section investigates the scalability of DistStream-based
implementations. We pinpoint the key factors that impact Dist-
Stream’s scalability through an in-depth bottleneck analysis,
and also study the impacts of batch sizes.

1) Methodology: Similar to Section VII-C, we use Kafka
to produce the maximum stable stream rate and measure the
clustering throughput of DistStream-based implementations.
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Fig. 8. Throughput gains of DistStream-CluStream and DistStream-
DenStream algorithms with different parallel degrees on three datasets.

We vary the parallelism degree, i.e., the number of parallel
tasks, from 1 to 32. For large-KDD99 and large-CoverType
datasets, we set the batch size to be 10 seconds. For high-
dimensional large-KDD98 dataset, we set the batch size to
be 20 seconds due to its lower rate, i.e., 10K/s compared to
100K/s of others described previously in Section VII-C1. We
discuss how to vary batch size in Section VII-D3.

2) Scalability results: Figure 8 depicts the throughput gains
for both DistStream-Clustream and DistStream-DenStream im-
plementations. The throughput gain is calculated as the ratio
of the achieved throughput at parallelism degree p=k to the
throughput at p=1. Our key observation is that DistStream-
based implementations achieve sublinear throughput gain of
13.2X when the parallelism degree is 32.

We identify two potential bottlenecks that lead to Dist-
Stream’s sublinear throughput gain. The first bottleneck comes
from performing the global update step in a single machine
without parallelization for ensuring the clustering quality. For
example, we find that the latency of global update stays
relatively constant, instead of decreasing, when parallelism
degree increases for both large-KDD99 (∼6µs per record) and
large-KDD98 (∼2µs per record). To improve the scalability,
we can run this global update step in a more powerful server
while still ensuring the clustering quality.

The second bottleneck comes down to the increasing num-
ber of straggler tasks, e.g., tasks with execution time that
exceed 1.2X of the average. Because DistStream currently uses
a synchronous update protocol, straggler tasks can prolong the
execution time of the first two parallelized steps. For example,
when running DistStream-CluStream on large-KDD99, the
percentage of straggler tasks increases from 12% to 25% as
parallelism degree increases from p=16 to p=32. The potential
optimization is to design new asynchronous update protocol.

Summary: DistStream-based implementations can achieve
sublinear throughput gain of 13.2X when the parallelism
degree is 32. The bottlenecks of DistStream include the single-
machine global update step and the straggler tasks under a
synchronous update protocol.

3) Impacts of batch sizes: Finally, we investigate whether
varying batch size can improve DistStream’s currently
achieved throughput, i.e., the throughput with parallelism
degree of 32. Figure 9 shows the achieved throughput, when
varying the batch size from 1s to 30s at fixed p=32. We
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Fig. 9. The throughput with different batch sizes at p=32. The throughput
on large-KDD98 is lower than others due to its higher feature dimension.
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Fig. 10. Throughput gains of DistStream-DStream and DistStream-ClusTree.

observe that the clustering throughput first increases with
the batch size and then drops at very large batch size (e.g.,
30s on large-CoverType dataset). The key reason for lower
throughput when the batch size is small comes down to the
lower task computation time. For example, when the batch size
was lowered to 1s, each task only received about 3K records
on large-CoverType, leading to higher percentage of system
and network overhead compared to that of larger batch sizes.
This indicates the potential to tune the batch size for higher
throughput. Currently, we configure batch size statically based
on a user-defined threshold (Section IV-D) but will explore
adaptive batch sizing approaches in future work.

E. Results on the other two algorithms

We also evaluate D-Stream and ClusTree on DistStream. The
experiments show that our DistStream-based implementations
still achieve comparable (on average 99.1%) clustering quality
with MOA-based counterparts. Figure 10 shows that our
DistStream-based implementations achieve sublinear through-
put gain with the increasing parallelism degree. The only
differences are that D-Stream and ClusTree algorithms are
more effective in finding the closest micro-clusters using grid
mapping [17] and tree-based search [24], and thus achieve 1.1-
1.3X higher throughput than CluStream and DenStream, when
implementing using DistStream.

VIII. RELATED WORK

Stream clustering algorithms. Stream clustering plays an
important role in real-time data analysis. With the one-pass
and memory capacity limitation, most existing stream clus-
tering algorithms [10], [19], [26] follow the online-offline
paradigm [11]. Even so, these algorithms are designed to
capture different clustering shapes with different micro-cluster
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representations and update functions. For example, partition-
based algorithms [9], [11] group the data stream into a
number of partitions and are suitable for finding spherical
clusters, while density-based algorithms like DenStream [16]
are good at finding arbitrary shapes. Grid-based algorithms
[17], [29] map the streaming data into discretized grids and
group connected dense grids into clusters. Researchers also
improve these algorithms for high-dimensional streams [12],
[29], for exploring the evolution of density mountain [22], etc.
Our work proposes an efficient framework for parallelizing
stream clustering algorithms that comply with the online-
offline paradigm.

To support high-speed distributed data streams, researchers
have extended some batch-mode clustering algorithms to work
in a distributed fashion [18], [32], [33]. These algorithms,
such as distributed k-center [18] and distributed probabilistic
algorithms [33], follow a different update paradigm called
two-phase merge paradigm. Recently, researchers [13], [14],
[23], [28] begin to implement a partition-based CluStream
algorithm on distributed stream processing systems such as
Spark Streaming and Storm. They adopt unordered mini-batch
paradigm [13], [14] or similar periodical update paradigm [23],
[28]. Our work improves clustering throughput and maintain
the clustering quality through order-aware mini-batch update
model.

Parallel approaches for machine learning algorithms. Cur-
rently, there are two types of parallel approaches for batch-
mode machine learning algorithms [30]. One is data-parallel
approach that horizontally splits the static big data into many
workers, iteratively trains model parameters in each worker,
and then aggregates the different model parameters together
in server node(s). This approach is widely supported by dis-
tributed machine learning frameworks like Spark MLlib [27].
The other approach is model-parallel that splits the large model
(e.g., parameter vectors) into different workers, iteratively
trains the partitioned model in each worker on all the dataset,
and then merges the trained partial models together. This
approach can be used in parameter-server based frameworks
such as Petuum [30] and Tensorflow [8]. We extend these
approaches to stream clustering by considering both the data
stream characteristics, namely one-pass, unbounded, ordering,
and computation characteristics such as sequential update
constraints and micro-cluster merging operation.

IX. CONCLUSIONS

Today’s data streams require high throughput that cannot
be delivered by single-machine stream clustering algorithms.
In this paper, we present DistStream to scale out the widely-
used online-offline stream clustering algorithms. DistStream
provides a new order-aware mini-batch update model with
efficient parallel approaches. DistStream is implemented atop
Spark Streaming and provides APIs for migrating single-
machine stream clustering algorithms to DistStream. Our eval-
uation shows that DistStream-based stream clustering algo-
rithms can achieve sublinear throughput gain and comparable
clustering quality with the single-machine counterparts.
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