
Understanding Exception-Related Bugs in
Large-Scale Cloud Systems

Haicheng Chen†, Wensheng Dou‡, Yanyan Jiang∗, Feng Qin†
† Department of Computer Science and Engineering, The Ohio State University, United States

‡ State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences, China
∗ State Key Lab for Novel Software Technology, Nanjing University, China
† {chen.4800, qin.34}@osu.edu, ‡ wsdou@otcaix.iscas.ac.cn, ∗ jyy@nju.edu.cn

Abstract—Exception mechanism is widely used in cloud sys-
tems. This is mainly because it separates the error handling code
from main business logic. However, the huge space of potential
error conditions and the sophisticated logic of cloud systems
present a big hurdle to the correct use of exception mechanism.
As a result, mistakes in the exception use may lead to severe
consequences, such as system downtime and data loss. To address
this issue, the communities direly need a better understanding of
the exception-related bugs, i.e., eBugs, which are caused by the
incorrect use of exception mechanism, in cloud systems.

In this paper, we present a comprehensive study on 210 eBugs
from six widely-deployed cloud systems, including Cassandra,
HBase, HDFS, Hadoop MapReduce, YARN, and ZooKeeper. For
all the studied eBugs, we analyze their triggering conditions,
root causes, bug impacts, and their relations. To the best of our
knowledge, this is the first study on eBugs in cloud systems, and
the first one that focuses on triggering conditions. We find that
eBugs are severe in cloud systems: 74% of our studied eBugs
affect system availability or integrity. Luckily, exposing eBugs
through testing is possible: 54% of the eBugs are triggered by
non-semantic conditions, such as network errors; 40% of the
eBugs can be triggered by simulating the triggering conditions
at simple system states. Furthermore, we find that the triggering
conditions are useful for detecting eBugs. Based on such relevant
findings, we build a static analysis tool, called DIET, and apply
it to the latest versions of the studied systems. Our results show
that DIET reports 31 bugs and bad practices, and 23 of them
are confirmed by the developers as “previously-unknown” ones.

I. INTRODUCTION

Exception mechanism is widely used to handle errors in
cloud systems. At the time of this writing, about 7% of
the source code in twelve popular open source distributed
systems [1] involves exception mechanism (Figure 1), i.e.,
throwing exceptions, or being enclosed in try, catch, or finally
code blocks. Such a widespread use of exception mechanism
is mainly due to its advantages over the traditional checking-
return-value mechanism [2]. First, it separates the error han-
dling code from main business logic, making programs easier
to reason about. Second, the runtime system automatically
propagates exceptions up along the call stacks until they are
caught, so that error conditions will not remain unnoticed.
Third, it allows developers to combine multiple exceptions by
using their common superclass exception, providing greater
flexibility to write the error handling code.

Unfortunately, highly diverse environments and system
complexity make exception handling in cloud systems prone

20.48
17.73

10.78
7.83

7.76
7.34

7.08
6.89

6.75
4.08

3.92

3.13
7.23

0

10

20

Chu
kw

a

Zoo
Keep

er Pig

Had
oo

p*
HBase Tez

Hive

Cass
an

dra

Amba
ri

Mah
ou

t
Avro

Spa
rk

Ave
rag

e

Proportion of 
exception-

related code 
(%)

Fig. 1. Statistics of source code (excluding empty lines) that involves
exception mechanism in twelve cloud systems. ∗ The Hadoop project includes
Hadoop common, Hadoop MapReduce, HDFS, and YARN.

to errors, which can severely hurt system reliability [3],
[4]. When implementing a cloud system, developers need
to constantly anticipate various conditions that may cause
exceptions. Such conditions can either come from the external
environment (e.g., a remote node is unreachable), or be caused
by internal program states (e.g., a variable is set to a wrong
value). Furthermore, the sheer scale of cloud systems (both
hardware size and software complexity) dramatically increases
the hurdle of correct exception handling. In this paper, we refer
to the mistakes in using exception mechanism as exception-
related bugs, or eBugs.

Existing studies on eBugs mainly investigate the root causes
based on source code patterns [5]–[8], the relation between
eBugs and certain language features (e.g., aspect-oriented
programming [9] and Android abstractions [6], [8]), and devel-
opers’ perception on eBugs [5], [6]. While having discovered
useful characteristics of eBugs, none of these studies consider
the exception triggering conditions and their relations with
eBugs. These relations are essential for understanding the root
causes and facilitating exposure and detection of eBugs. Cloud
systems often encounter complicated external and internal
triggering conditions for exceptions. This unique characteristic
motivates us to investigate the root causes of eBugs through
understanding their exception triggering conditions.

In this paper, we perform a comprehensive study on eBugs
in cloud systems from the perspective of triggering conditions.
In particular, this study covers 210 well-documented eBugs
selected from about 5,000 exception-related JIRA [10] issues
across six popular open source cloud systems, including
Cassandra [11], HBase [12], HDFS [13], Hadoop MapRe-
duce [14], YARN [15], and ZooKeeper [16]. We thoroughly
analyze both their bug reports and fixing patches to answer



the following key research questions:

• RQ1: How are eBugs triggered in cloud systems? It helps
us understand the conditions that trigger eBug-bound ex-
ceptions. Our findings can benefit developers to effectively
expose eBugs in cloud systems.

• RQ2: What is the relation between the triggering conditions
and the root causes of eBugs? Our in-depth analysis on the
root causes and their relations with the triggering conditions
can facilitate eBug detection in cloud systems.

• RQ3: What are the impacts of eBugs on cloud systems? By
analyzing their impacts, we can understand the severity of
eBugs in cloud systems.

To the best of our knowledge, this is the first comprehensive
study on eBugs in real-world cloud systems, and the first
one from the perspective of triggering conditions. Through
this study, we have obtained many interesting findings that
open up new research opportunities to combat eBugs in the
cloud. The main findings are: (1) More than half (54%) of
the studied eBugs are exposed by non-semantic triggering
conditions, most (75%) of which are network errors and file
system errors (Finding 1). (2) Most (86%) of the eBugs do not
have strong timing requirements on their triggering conditions
(Finding 2). (3) 41% of the eBugs are caused by handling an
exception in an overly-general (thus incorrect) way. Among
them, many (34%) are caused by incorrectly applying the
same handling operations to the exceptions that have different
triggering condition types (Finding 7). (4) 10% of the eBugs
are caused by creating exception objects that do not describe
their triggering conditions accurately (Findings 3, 4, and 5).
(5) Most (74%) of the eBugs affect the dependability of cloud
systems, e.g., by crashing nodes or losing data, and developers
consider most (82%) of them severe (Finding 8).

These findings show the severity of eBugs in cloud systems,
while revealing many new opportunities to combat them. First,
we can expose eBugs by simulating non-semantic triggering
conditions at simple system states, e.g., consistent global
states. Second, we can detect eBugs by analyzing exception
triggering conditions. For instance, we can detect inaccurate
exceptions by checking whether the exceptions accurately
describe their triggering conditions. As another example, we
can detect overly-general handlers by examining if the same
handling code is applied to exceptions with different triggering
condition types. Based on these findings, we build a static
analysis tool, called DIET, to detect inaccurate exceptions
by analyzing their exception classes and error messages. By
applying DIET to the latest versions of the studied systems,
we find 31 new bugs and bad practices. At the time of this
writing, developers have confirmed 23 of them. Note that, an
inaccurate exception can be an eBug if it affects the correctness
or performance of a checked system or a bad practice if it may
introduce a potential eBug in future system versions.

In summary, we make the following key contributions:

• We present the first comprehensive study on eBugs from the
perspective of triggering conditions in six widely-deployed
cloud systems.

TABLE I
INVESTIGATED BUG REPORTS IN THE STUDIED SYSTEMS

System CA HB HF MR YN ZK Total

Retrieved 1,336 1,576 763 460 457 210 4,802
Studied 40 92 31 16 23 8 210

• We unveil many interesting findings and explain their impli-
cations for combating eBugs in cloud systems. For example,
we find that triggering conditions and their relations with
root causes provide valuable information for the developers
of cloud systems.

• Based on our findings, we build a static analysis tool, called
DIET, and evaluate it using the latest versions of the studied
systems. We have exposed many new bugs and bad practices
that have been confirmed by the developers of these systems.

• We provide a large benchmark of eBugs in cloud systems,
which can be used to evaluate the effectiveness of the tools
that expose and detect eBugs in cloud systems. Our eBug
database is available at [17].

II. METHODOLOGY

A. Target Systems

To understand the characteristics of eBugs in real-world
cloud systems, we select the target systems based on three
criteria: (i) The systems must be diverse for an unbiased
dataset. (ii) The systems should be mature and popular, so
that we can understand the real problems faced by developers.
(iii) The systems should be open source and have public issue
tracking systems.

With these requirements in mind, we identify the following
six cloud systems: (i) Cassandra [11], a highly available
peer-to-peer NoSQL database; (ii) HBase [12], a master-
slave NoSQL database; (iii) HDFS [13], a distributed file
system; (iv) Hadoop MapReduce [14], a distributed data
processing framework; (v) YARN [15], a distributed resource
management system; and (vi) ZooKeeper [16], a distributed
coordination service.

B. EBug Collection

All the target systems use JIRA [10] to manage their issues.
Over a time span of more than ten years (from 2007 to 2018),
more than 60,000 issues were submitted for these systems.
It is time-consuming and impractical to manually inspect all
these issues and identify eBugs from them. We therefore apply
a few filtering rules to identify the relevant issues.

First, we use the following JQL (JIRA Query Language)
statement to retrieve potentially relevant issues:

issuetype = Bug AND status IN (Resolved,

Closed) AND resolution = Fixed AND text

˜ "exception*"

With this JQL statement, we narrow down all the issues to only
fully-resolved (Resolved or Closed in status) and fixed bugs



that contain the keyword exception or exceptions. This JQL
returns us with 4,802 issues (Row “Retrieved” in Table I1).

We further narrow down the retrieved issues by requiring
each selected bug report to include a full exception stack trace
and a fixing commit. The exception stack trace and the fixing
commit are critical for us to fully understand an eBug because
they contain information like what exception is thrown and
how the eBug occurs. We further remove the ones whose bugs
are located in test files or non-Java files, because they are not
related to the core functionality of the target systems. This
leaves us with 1,561 reports.

Finally, we manually inspect the remaining 1,561 reports
and keep the ones that are related to exception mechanism as
discussed in §III. This leaves us with 210 issues for further
analysis (Row “Studied” in Table I). In this paper, we denote
an eBug using its bug ID in JIRA, i.e., SYS-###, where SYS

is the system name and ### is the eBug’s issue ID.

C. EBug Analysis

To answer our three research questions, we perform an in-
depth analysis on each eBug based on the bug description
(including the exception stack trace), the discussion among
developers in the report, and the source code of the target
system (including the fix). We also refer to online resources,
e.g., documentation, to facilitate our understanding on eBugs.
Through this process, we recover the full picture of how each
eBug is triggered (RQ1), how the target system incorrectly
uses exception mechanism (RQ2), and how each eBug affects
the system (RQ3). Then, we classify eBugs according to their
triggering conditions, root causes, and bug impacts.

D. Threats to Validity

To maintain the accuracy of our study, we employ different
measures to improve our understanding. For example, we use
the final fixing commit and sometimes reproduce an eBug to
confirm its triggering condition and root cause.

Even though we try to be unbiased, readers need to un-
derstand the following limitations of our study. First, all of
our subject systems are open source cloud systems. EBugs in
commercial cloud systems or other types of software systems
may have different characteristics. Additionally, we may miss
some eBugs due to our selection process. For example, we may
exclude eBugs that do not have full exception stack traces in
their bug reports. Finally, we only study eBugs in Java. While
the exception mechanism in Java is generally similar to the
ones in other languages (e.g., C++, C#, and Python), Java has
a few unique features, which may affect developers’ practice
in using exceptions. Therefore, readers need to be cautious
when extending our findings to other scenarios.

III. EXCEPTION MECHANISM

Figure 2 shows the model of exception mechanism. During
program execution, an unexpected error, referred to as a
triggering condition, occurs. Based on the error type, Java

1For simplicity, we use CA, HB, HF, MR, YN, and ZK to represent
Cassandra, HBase, HDFS, MapReduce, YARN, and ZooKeeper, respectively.

Exception
Creation

Exception
Propagation

Reacted
Method

Exception
Handling

Triggering
Condition CA B D

1 void B(...) throws OtherException {
2 try { A(...);
3 } catch (SomeException e) {
4 someHandling(...);
5 throw new OtherException(e);
6 } }

Fig. 2. The model of exception mechanism, and the code snippet of method
B() that handles the exception thrown from method A().

runtime creates and propagates an exception. The propagation
starts from a throw statement and ends at a catch statement,
along the call stack in the reverse call order. After a method
catches the exception and performs exception handling (Boxes
A, B, and D), it can optionally re-throw the caught exception
(Box A), or wrap the caught exception in a new exception
before re-throwing it (Box B). Either way, the re-thrown ex-
ception starts a new propagation. Along the propagation path,
some methods (including the one where the throw statement
locates) may not catch the exception. Instead, these methods
can specify the exception class in the method signatures using
the throws keyword. In this way, a method notifies its callers
that it can propagate the specified exception, so that the callers
can implement proper exception handling as needed. Box C
represents the scenario where a method does not catch the
exception but specifies it in the signature. We consider both
catching an exception and specifying an exception in the
signature as a method reacting to the exception.

The lower-half in Figure 2 shows the code snippet of
B(). When A() throws a SomeException, B() catches and
handles it (Lines 3-4). B() then wraps the SomeException in
a newly created OtherException, which it throws at Line 5.
B() also specifies the re-thrown OtherException (Line 1)
so that its callers can react to the exception accordingly.

We further define the following terms used in our study:
• Root exception: The initially-created exception due to the

triggering condition, e.g., the left diamond shape in Figure 2.
• Cause exception: If an exception ea is wrapped by another

exception eb, ea is the cause exception of eb. In the example
above, the SomeException is the cause exception of the
OtherException.

• EBug: A bug that occurs in creating, throwing, catching, or
handling an exception.

IV. TRIGGERING CONDITIONS

The triggering condition is the key to trigger an eBug. In
this section, we study both the types of triggering conditions
(§IV-A) and their timing requirements (§IV-B).

A. Triggering Condition Types

We first examine whether the triggering conditions are re-
lated to program semantics. Semantic conditions are specific to



TABLE II
TRIGGERING CONDITIONS OF THE STUDIED EBUGS AND THEIR TYPICAL SCENARIOS IN EACH SYSTEM

Triggering Condition (# eBugs) Scenario (# eBugs) CA HB HF MR YN ZK

Non-semantic condition (114)

Network error (46)

Premature disconnection (17) 0 8 5 1 1 2
Local timeout (12) 2 5 2 0 3 0
Connection refused (11) 1 8 0 1 1 0
Other network errors (6) 0 6 0 0 0 0

File system error (40)
File corrupted (23) 10 11 1 1 0 0
File not found (13) 3 5 3 2 0 0
Other file system errors (4) 2 0 2 0 0 0

Out of resource (16)

Out of memory (5) 1 2 1 1 0 0
Out of disk space (5) 1 0 1 1 1 1
Port conflicted (3) 1 1 1 0 0 0
Out of other resources (3) 0 0 3 0 0 0

Untimely interrupt (12)
Thread interrupted when invoking a

2 1 0 3 6 0
blocking method (12)

Semantic condition (96) - - 17 45 12 6 11 5

Total 210 40 92 31 16 23 8

each individual target system, while findings on non-semantic
conditions are general to a broader class of cloud systems.
We notice that the majority of the studied eBugs (114 out
of 210) are triggered by non-semantic conditions such as a
node being unreachable. The remaining eBugs (96 out of 210)
are triggered by semantic conditions such as a variable being
assigned with an incorrect value.

To better understand non-semantic conditions, we further
classify them into the following four categories based on
the error types: (i) Network error: The system encounters a
failed network connection. (ii) File system error: The system
encounters a failed file system operation, e.g., opening a non-
existent file. (iii) Out of resource: System resource, such as
memory space, is used up. (iv) Untimely interrupt: A system
interrupt occurs when a thread is sleeping or waiting, e.g., after
calling Thread.sleep(). Table II shows the typical scenarios
of each condition type and their distribution.

Finding 1: Most (75%) of the non-semantic conditions are
either network errors or file system errors.

1) Network Error: Cloud systems are deployed on network
and thereby strive to handle network errors in both design
and implementation phases. However, network error is still
the most common (40%) type of non-semantic condition in
the studied eBugs. With further investigation, we find that
most (87%) of the network errors occur in the following
three scenarios: (i) Premature disconnection. For example,
in HDFS-7009, a DataNode throws an EOFException when
a NameNode terminates the connection after sending par-
tial data to the DataNode. (ii) Local timeout. For instance,
in HBASE-6299, an HMaster throws a SocketTimeout-

Exception if it times out before receiving a response from
a RegionServer. (iii) Connection refused. In YARN-196, a
NodeMagager tries to connect to a ResourceManager that

has not started. As a result, the remote operating system
rejects the connection, causing the NodeManager to throw a
ConnectException. The remaining (13%) network errors
are caused by various reasons, such as failed routing and
unsuccessful host name resolution.

2) File System Error: Cloud systems store critical user
and system data on file systems. Since file systems are never
perfect [18], cloud systems are expected to correctly react to
file system errors. For example, when failing to read a data
chunk, a distributed file system (e.g., HDFS) may start the
data recovery process using a remote data replica. However,
we find that a significant number of eBugs are triggered by
file system errors. Among these errors, the most frequent
scenarios are files being corrupted and files not found: (i) File
corrupted. For example, in CASSANDRA-12728, a Cassan-
dra server throws an EOFException when it unexpectedly
reads the end of a truncated hint file. (ii) File not found.
For instance, in HBASE-9563, a restarted HMaster throws a
FileNotFoundException when it fails to find a znode file
to read. Other file system errors include access mode violation,
file path resolution failure, and disk failure.

3) Out of Resource: Cloud systems interact with system
resources extensively. However, the desired resource may not
be always available. 14% of the non-semantic eBugs are
triggered when certain resource is exhausted. Among the 16
out-of-resource eBugs, 13 are triggered due to running out
of (i) memory space, (ii) disk space, or (iii) host ports. For
example, in CASSANDRA-11540, a Cassandra server throws a
BindException when it tries to bind an occupied port. Other
resources include opened file handlers and disk quotas.

4) Untimely Interrupt: Cloud systems are highly concur-
rent. They may try to perform two conflicting operations at
the same time. When this happens, one operation may stop the
other via interrupt. We find that, a considerable amount (11%)
of non-semantic eBugs are triggered by untimely interrupts.

https://issues.apache.org/jira/browse/HDFS-7009
https://issues.apache.org/jira/browse/HBASE-6299
https://issues.apache.org/jira/browse/YARN-196
https://issues.apache.org/jira/browse/CASSANDRA-12728
https://issues.apache.org/jira/browse/HBASE-9563
https://issues.apache.org/jira/browse/CASSANDRA-11540


TABLE III
TIMING REQUIREMENTS ON EBUG TRIGGERING CONDITIONS

Condition Type Timing Requirement
Weak Moderate Strong

Network error 9 36 1
File system error 32 5 3
Out of resource 5 11 0
Untimely interrupt 0 10 2
Semantic condition 39 34 23

Total 85 96 29

For example, YARN-2846 is triggered when one thread of a
NodeManager process is checking the status of a container,
while another thread is shutting down the whole process.

5) Semantic Condition: About half (46%) of the root
exceptions are triggered by semantic conditions. Semantic
conditions are closely related to program logic, and thereby
can be specific to each individual system. For example, in
CASSANDRA-5725, a Cassandra server throws an Unknown-

ColumnFamilyException when it tries to access a nonex-
istent column family. From this example, we can see that
triggering this type of eBugs needs domain knowledge about
the target systems, e.g., column family is a data structure
used in Cassandra to organize both user data and system data.
However, other systems, e.g. HDFS, do not have this concept.
Since 46% of the conditions are relevant to semantics, they
call for more attention from our communities.

B. Timing Requirements on Triggering Conditions

Finding 2: Most (86%) of the eBugs do not have strong
timing requirements on their triggering conditions.

EBugs can be triggered only when triggering conditions
occur at certain system states. To understand the difficulty of
triggering eBugs in cloud systems, we further analyze each
eBug’s timing requirement on its triggering condition. We
use a similar measurement as a previous bug study in cloud
systems [19], and classify the timing requirements into three
categories, as shown in Table III.
• Weak (85 eBugs). To trigger this type of eBugs, the trig-

gering condition can occur at any consistent global state, or
before the system starts. For example, ZOOKEEPER-2757
can be triggered whenever a user issues a delete command
with an invalid pathname.

• Moderate (96 eBugs). The triggering condition needs to
occur on a node when it is in certain states. To trigger these
eBugs, we only need to consider the runtime state of one
node. For example, MAPREDUCE-5251 can be triggered by
simulating out of disk space when a reduce task tries to
write a map output to disk. There is no need to check the
states of other nodes in the system.

• Strong (29 eBugs). The triggering condition needs to occur
on a node when both the current node and other nodes are in

Inaccurate Exception Missing Reaction

Overly-general Reaction

A method that reacts to 
only some exceptions.

Incorrect Reaction Logic

OROR

A method with 
any reaction.

A method with 
no reaction.

Fig. 3. Four different types of eBug root causes. For each type, we show the
correct version on the left (green) and the buggy version on the right (red).

TABLE IV
STATISTICS OF EBUG ROOT CAUSES

Root Cause eBug # CA HB HF MR YN ZK

Inaccurate exception 21 3 8 4 3 3 0
Missing reaction 36 12 11 3 3 4 3
Overly-general reaction 87 13 42 14 6 11 1
Incorrect reaction logic 66 12 31 10 4 5 4

Total 210 40 92 31 16 23 8

certain states. To trigger these eBugs, we need to consider
the states of multiple nodes. For example, YARN-3842 can
only be triggered when a MapReduce ApplicationMaster
asks a NodeManager to start a container, while the Node-
Manager is still in the initialization phase.

V. ROOT CAUSES

Based on the exception mechanism shown in Figure 2,
eBugs can be classified into three categories: (1) Inaccurate
exception, if the eBug is caused by creating an inaccurate ex-
ception; (2) Missing reaction, if the eBug is caused by neither
catching nor specifying an exception in the method signature;
and (3) Incorrect reaction, if the eBug incorrectly reacts to
an exception. Incorrect reaction can be further broken down
into overly-general reaction, where different exceptions are
incorrectly handled in the same way, and incorrect reaction
logic, where the reaction logic is incorrect for all exceptions.
Figure 3 illustrates these four types of eBugs, and Table IV
shows their distribution. Note that, previous studies have also
classified eBugs based on their root causes [5]–[8]. Unlike
them, the focus of our classification is on the relation between
the triggering conditions and the root causes (RQ2).

A. Inaccurate Exception

A newly-created exception is expected to accurately repre-
sent the triggering condition so that the system can correctly
react to the error. This requires the exception to instantiate the
correct class and contain correct information such as an error
message and a cause exception. Table V shows the number of
eBugs where the exception instantiates a wrong class, has a
wrong error message, or misses a cause exception.

https://issues.apache.org/jira/browse/YARN-2846
https://issues.apache.org/jira/browse/CASSANDRA-12513
https://issues.apache.org/jira/browse/ZOOKEEPER-2757
https://issues.apache.org/jira/browse/MAPREDUCE-5251
https://issues.apache.org/jira/browse/YARN-3842


TABLE V
THE TYPE DISTRIBUTION OF INACCURATE EXCEPTION EBUGS

Type Wrong Class Wrong Message Lacking Cause Total

eBug # 13 5 3 21

1 void updateMetaLocation() throws IOException {
2 if (waitForRootServerConnection() == null)
3 - throw new NullPointerException(...);
4 + throw new IOException(...);
5 }
6 void process() {
7 try { updateMetaLocation();
8 } catch (IOException e) { cleanup(); }
9 }

Fig. 4. EBug HBASE-3164. A NullPointerException is thrown when
a remote node is unreachable.

1) Wrong Exception Class: Exception class is the primary
source to indicate the triggering condition. An exception
instance with a wrong class will not be handled correctly.
We find two ways of creating incorrect exceptions: (i) In
five eBugs, the incorrect exception class is the superclass of
the intended one. (ii) In the other eight eBugs, the incorrect
exception class has no relation with (i.e., neither a superclass
nor a subclass of) the intended one.

Finding 3: Using a superclass of the intended exception
makes it difficult to perform correct exception handling.

We find that IOException is the only culprit class in all the
five eBugs that use a superclass of the intended exception. For
example, in HDFS-8224, a DataNode throws an IOException
when it tries to read the checksum granularity from a corrupted
file. Since other disk failures, e.g., out of disk space, also
trigger IOException, the DataNode cannot differentiate the
exceptions to perform data recovery only for file corruption.
To fix this bug, a dedicated subclass exception, Invalid-
ChecksumSizeException, is used to denote the case where
the file storing the checksum granularity is corrupted.

Finding 4: In half of the eBugs that create a totally
misleading exception, the exception class is inconsistent
with its triggering condition.

When the newly-created class is neither a superclass nor
a subclass of the intended one, the exception cannot be
correctly caught by its intended catch block. Take eBug
HBASE-3164 in Figure 4 as an example. When a Region-
Server opens a META region, it needs to report the up-
date to the RootServer. If the RootServer is currently un-
reachable, waitForRootServerConnection() will return
a null (Line 2). Instead of throwing an IOException that
semantically matches the triggering condition (i.e., network
error), the buggy code throws a NullPointerException

(Line 3). “We actually throw the NPE [when] it’s not an actual

TABLE VI
THE TRIGGERING CONDITIONS AND EXCEPTION CLASSES OF FOUR

EBUGS WITH TOTALLY MISLEADING EXCEPTION CLASSES

Bug ID Triggering Cond. Exception Class

CASSANDRA-11448 Out of resource RuntimeException
HBASE-3164 Network error NullPointerException
HDFS-2484 File system error LeaseExpiredException
YARN-2846 Untimely interrupt IOException

TABLE VII
EXCEPTION CLASSES THAT ARE TRIGGERED MORE THAN ONCE BY

NON-SEMANTIC TRIGGERING CONDITIONS

Triggering Cond. N† P∗ Top 4 Exception Class (#)♣

Network error 8 91%

ConnectException (11)
IOException (10)

SocketTimeoutException (6)
EOFException (5)

File system error 4 78%

EOFException (11)
FileNotFoundException (10)

IOException (8)
IllegalArgumentException (2)

Out of resource 3 75%
OutOfMemoryError (5)

IOException (4)
BindException (3)

Untimely interrupt 1 75% InterruptedException (9)

† N is the number of exception classes. ∗ P is the percentage of eBugs the
classes cover the triggering condition. ♣ Due to space limit, we only show
the top four exception classes for network errors.

NPE”, a developer also points out. As a result, even though
a proper catch block exists (Line 8), it will not catch the
exception, leaving the META region inaccessible.

Among the eight eBugs in this category, four of them are
triggered by non-semantic conditions. We find that all the
incorrect classes are inconsistent with their conditions (Table
VI). This makes us wonder: Does each type of non-semantic
condition have a set of frequently triggered exception classes?
If so, the inconsistency between the common classes and the
triggered ones may help detect inaccurate exception eBugs.

We analyze all the 114 eBugs with non-semantic triggering
conditions. For each eBug, we use the root exception class
because it is directly related to the triggering condition.
To prevent using the wrong exception classes in inaccurate
exception eBugs, we employ their fixing patches to retrieve
the correct exception classes.

Finding 5: For non-semantic triggering conditions, a few
(1-8) exception classes can cover most eBugs (75-91%).

As Table VII shows, each condition type triggers only
a few exception classes more than once, and these classes
cover a majority of eBugs with the corresponding condition
type. For example, three exception classes cover 75% of the
eBugs that are exposed by the triggering condition of “out
of resource”. We also notice that these frequently triggered

https://issues.apache.org/jira/browse/HBASE-3164
https://issues.apache.org/jira/browse/HDFS-8224
https://issues.apache.org/jira/browse/HBASE-3164
https://issues.apache.org/jira/browse/CASSANDRA-11448
https://issues.apache.org/jira/browse/HBASE-3164
https://issues.apache.org/jira/browse/HDFS-2484
https://issues.apache.org/jira/browse/YARN-2846


14

2 2 1 1
0
5
10
15

1 2 3 5 7

N
um

be
r o

f 
C

la
ss

es NullPointerException

IllegalArgumentException

Occurrence

Fig. 5. Exception classes that occur in missing reaction eBugs.

classes do not include the misleading ones shown in Table VI.
For example, the RuntimeException in CASSANRA-11448

is not a frequently triggered class for the “out of resource”
triggering condition.

2) Wrong Error Message or Lacking Cause Exception:
When an exception carries a wrong error message, or an
exception does not wrap a cause exception, developers may
lack critical information about the triggering condition for
diagnosing the failure. For example, in HDFS-7899, if a
DataNode disconnects with an HDFS client, the client will
throw an EOFException with a message stating: “Premature
EOF: no length prefix available”. As the bug reporter points
out, this error message “is not very clear to a user” because
it does not indicate that the DataNode is unreachable.

B. Missing Reaction

Once an exception is thrown, some methods in the call
stack need to react to it. If these methods neither catch the
exception, nor specify it in their signatures, we refer to this
type of mistake as a missing reaction eBug. We examine the
fixing patch of an eBug to identify which methods should react
to an exception. To gain more insights, we also analyze the
exception classes that are missed.

Finding 6: IllegalArgumentException (19%) and NullPoint-
erException (14%) are the dominant exception classes that
cause missing reactions.

As shown in Figure 5, we find that many exception
classes can be missed by developers. Among them, two
classes are more frequent than others: IllegalArgument-
Exception and NullPointerException. For example, in
CASSANDRA-5701, a Cassandra server throws an Illegal-

ArgumentException when a client queries a nonexistent
column family from it. Since none of the methods in the call
stack handles this exception, the Java thread crashes, and the
client gets disconnected abruptly.

C. Overly-General Reaction

If a method can throw multiple exception classes, it
is a norm for developers to specify only their com-
mon parent class in the method signature. For exam-
ple, method reacquireContainer() in Figure 6 speci-
fies only an IOException (Line 10), but it can throw
subclasses like InterruptedIOException and FileNot-

FoundException.
However, this common practice poses a big challenge for

accurate exception handling, because developers need to be

1 void call() {
2 try { reacquireContainer(...);
3 + } catch (InterruptedIOException e) {
4 + LOG.warn(...);
5 } catch (IOException e) {
6 // FileNotFoundException can reach here.
7 deactivateContainer(...);
8 } }
9

10 int reacquireContainer(...) throws IOException {...}

Fig. 6. EBug YARN-5103. Handling IOException and its subclasses in
the same way stops a running YARN container prematurely.

TABLE VIII
THE RELATION BETWEEN THE TRIGGERING CONDITIONS OF THE

INCORRECTLY REACTED EXCEPTION AND THE CORRECTLY REACTED
ONES IN OVERLY-GENERAL REACTION EBUGS

Relation Same Type Different Types Unknown Total

eBug # 48 30 9 87

aware of all the potential exceptions a method can throw. As
a result, developers can make overly-general reaction eBugs,
i.e., incorrectly handling multiple exceptions in the same way
while they should be treated differently. We find that overly-
general reaction causes many (41%) eBugs.

For example, eBug YARN-5103 in Figure 6 incorrectly
applies the same handling to IOException and its subclasses,
such as InterruptedIOException and FileNotFound-

Exception. When a NodeManager restarts, it will invoke
reacquireContainer() to reload the information of a
running container and wait for its completion (Line 2). If
the NodeManager interrupts the waiting thread because it
needs to restart again, reacquireContainer() will throw
an InterruptedIOException. The method call() incor-
rectly catches and handles this exception in the same way
as other IOExceptions (Lines 5-7). Therefore, the running
container stops prematurely for a benign interrupt (Line 7).
Instead, the method call() should catch the Interrupted-

IOException separately and let the container continue run-
ning (Lines 3-4).

Finding 7: In many (34%) overly-general reaction eBugs,
the incorrectly reacted exception and the correctly reacted
ones are caused by different types of tiggering conditions.

Although multiple exceptions can be combined and handled
in the same way, exceptions with different triggering condition
types (i.e., network error, file system error, out of resource,
untimely interrupt, and semantic condition in §IV-A) usually
represent different errors and may require different handling.
We analyze the relation between the correctly reacted excep-
tions (whose reaction is not changed in the fixing patch) and
the incorrectly reacted one (as specified in the eBug report) in
each eBug to see if they are triggered by different triggering
condition types (Table VIII). If the incorrectly reacted excep-

https://issues.apache.org/jira/browse/CASSANDRA-11448
https://issues.apache.org/jira/browse/HDFS-7899
https://issues.apache.org/jira/browse/CASSANDRA-5701
https://issues.apache.org/jira/browse/YARN-5103
https://issues.apache.org/jira/browse/YARN-5103


1 List<ServerName> fetchServerAddresses() {
2 try { return listServerNames();
3 } catch (KeeperException e) {
4 - return null;
5 + return new ArrayList<ServerName>(0);
6 } }

Fig. 7. EBug HBASE-4045. Instead of a null, the handler should return
an empty ArrayList when server names cannot be retrieved.

TABLE IX
EBUG FAILURE SYMPTOMS

Symptom eBug #

Node downtime 48
Incorrect error message 44
Data loss or potential data loss 31
Hang or performance downgrading 26
Resource leak/exhaustion 10
Operation failure† 51

Total 210

†We only consider an eBug as causing operation failure if it does not have
any other symptom.

tion and the correctly reacted ones are caused by different
triggering condition types, we label the eBug as different type.
If their triggering condition types overlap, we label the eBug
as same type. We cannot infer the triggering conditions of the
correctly handled exceptions in nine eBugs due to insufficient
information around the throw statements. So, we label them
as unknown. We observe that, in many (34%) overly-general
reaction eBugs, the exceptions are triggered by different
condition types. For example in YARN-5103 (Figure 6), the
InterruptedIOException is triggered by an untimely in-
terrupt, while other IOExceptions are triggered by different
condition types, like a FileNotFoundException triggered
by a file system error.

D. Incorrect Reaction Logic

If a handler is incorrect for all the exceptions it handles,
we say that it has incorrect reaction logic. Take HBASE-4045

in Figure 7 as an example. In HBase, when a RegionServer
tries to replicate its data to a different cluster, it needs to
fetch the destination server names from ZooKeeper (Line 2).
If ZooKeeper is unreachable, an exception will be thrown.
The handler catches it (Line 3) and returns a null (Line 4).
The caller of fetchServerAddresses() does not expect the
return value to be null, and dereferences it (not shown in the
figure), which crashes the thread. Instead, the handler should
return an empty ArrayList, which the caller can handle
properly. Detecting this type of eBugs requires understanding
the system logic, which remains a challenge for future work.

VI. BUG IMPACTS

We study the eBug impacts from two perspectives. First, we
analyze their failure symptoms to understand how they affect

TABLE X
JIRA ISSUE PRIORITY OF EBUGS

Priority Blocker Critical Major Minor Trivial Total

eBug # 21 42 110 33 4 210

the systems (Table IX). Then, we use the issue priority to infer
if developers consider an eBug as a severe defect (Table X).

Finding 8: 74% of the eBugs affect the availability (e.g.
node downtime) and integrity (e.g., data loss) of cloud
systems. Moreover, developers consider most (82%) of them
as severe defects (i.e., priority not lower than major).

Overall, we find that, eBugs have various failure symptoms.
Many of them affect the system availability (e.g., node down-
time) and integrity (e.g., data loss). Sometimes, eBugs can turn
a transient and benign error (i.e., an exception) into a severe
failure. For example, in YARN-196, a NodeManager aborts
only because it fails to register itself with the ResourceMan-
ager due to a transient network partitioning. A simple retry
fixes the eBug, and allows the NodeManger to start.

We also find that, developers consider most (82%) of the
eBugs as severe defects, i.e., having a priority of blocker,
critical, or major. Even the seemingly most benign type of
symptoms, i.e., incorrect error message, can cause much
trouble for end users of cloud systems: two thirds of these
cases are marked as major or a higher priority in JIRA.

VII. LESSONS LEARNED AND APPLICATIONS

Our study shows that eBugs seriously affect the depend-
ability of cloud systems (Finding 8). In this section, we
discuss implications for existing approaches and opportunities
for new research to combat eBugs in cloud systems (§VII-A,
§VII-B, and §VII-C). Additionally, we discuss our experiences
in applying the findings to detect new inaccurate exceptions
in the studied cloud systems (§VII-D).

A. Testing Cloud Systems under Adversarial Conditions

Software testing is critical in exposing bugs before software
release. Many testing techniques have been proposed for
exposing or detecting software bugs [20]–[22], but few are
designed for cloud systems [23]–[25].

Cloud systems usually run in complex cluster environments,
and may encounter different kinds of adversarial conditions,
e.g., network errors and file system errors. Improperly han-
dling these conditions can lead to severe consequences. As
Figure 1 shows, cloud systems often use exception mechanism
to handle adversarial conditions. However, Finding 1 indicates
that there are issues in handling some conditions. Existing
testing techniques on cloud systems have tried to inject adver-
sarial conditions such as network partitioning [23], [25]–[28],
file corruption, and out of disk space [29]. However, other
adversarial conditions in Table II, such as connection refused,
file not found, port conflict, and untimely interrupt, have not

https://issues.apache.org/jira/browse/HBASE-4045
https://issues.apache.org/jira/browse/YARN-5103
https://issues.apache.org/jira/browse/HBASE-4045
https://issues.apache.org/jira/browse/YARN-196


been attempted in cloud systems. Moreover, researchers and
developers can use the triggering conditions summarized in
§IV as a checklist to test cloud systems. For example, by
limiting the available memory and disk space during normal
testing, eBugs that are triggered by either “out of memory” or
“out of disk space” become more likely to be exposed.

To trigger an eBug, testing tools need to simulate the
triggering condition at proper system states. Luckily, Finding 2
shows that most (86%) eBugs, e.g., ZOOKEEPER-2757 and
MAPREDUCE-5251, have weak or moderate requirements on
system states. This finding indicates that simple simulation of
triggering conditions can expose most eBugs in cloud systems.

B. Avoiding eBugs in Cloud Systems

Our findings imply that enhancing exception flow analysis
can help avoid eBugs. Exception flow analysis [30]–[35] helps
developers better understand the exception propagation in the
system and thereby better react to exceptions. Throughout
our study, we consistently observe that the root causes of
many eBugs are related to their exception triggering conditions
(Findings 1, 4, 5, and 7). Therefore, by combining exception
flow analysis with the related triggering conditions, developers
can obtain deeper understanding about what error triggers an
exception, and thus handle it correctly. For example, HBase
defines 72 exception subclasses that extend IOException. For
a method handling IOException, it will be greatly helpful
to avoid overly-general reactions if developers can know each
concrete exception and its triggering condition.

C. Detecting eBugs in Cloud Systems

Unlike existing eBug detection tools that focus on empty
or incomplete exception handlers [3], overly-general handlers
that stop the system [3], missing recovery operations [36],
or violations of predefined exception propagation rules [37],
our findings (Findings 3, 4, 5, and 7) reveal the important
correlation between the root causes and triggering conditions,
which suggests new opportunities for detecting eBugs.

Findings 3-5 indicate that inaccurate exceptions do not
accurately describe their triggering conditions. Therefore, it is
possible to detect these eBugs by checking if the exceptions
are consistent with their triggering conditions. In this way, we
can detect eBugs like HBASE-3164, where HBase incorrectly
throws a NullPointerException for a network error. Table
VII also provides the commonly triggered exceptions for each
non-semantic condition type. Detection tools can use it as a
checklist to detect inaccurate exceptions.

Similarly, Finding 7 shows that some overly-general reac-
tions incorrectly apply the same handling code to the excep-
tions that are caused by different triggering condition types.
This suggests a new way to detect overly-general reactions,
i.e., by checking if the handled exceptions are triggered by
different condition types. Therefore, we can detect eBugs
like YARN-5103, where two exceptions (InterruptedIO-
Exception and FileNotFoundException) are triggered by
different condition types (untimely interrupt and file system
error, respectively) but are handled in the same way.

D. DIET: Detecting Inaccurate Exceptions using Triggering
Condition Types

Findings 3 and 4 in §V-A show that inaccurate exceptions
cannot describe the triggering conditions precisely, and may
mislead developers to handle them incorrectly. We also obtain
two interesting observations from our study: (1) There exist
strong relations among exception classes and their triggering
condition types (Finding 5). (2) An exception’s error message
usually convey information about its triggering condition type.
Ideally, an exception’s class and error message should convey
the consistent information about its triggering condition type.
If an exception’s class and its error message imply different
types of triggering conditions, the exception is likely to be
inaccurate. Inspired by these observations, we build a static
analysis tool, DIET, to automatically detect inaccurate excep-
tions, by inspecting the inconsistency between an exception’s
class and its error message.

1) DIET’s Approach: DIET works in two phases: a learning
phase and a detection phase. In the learning phase, given a set
of (e, t) pairs, where e denotes a root exception and t denotes
e’s triggering condition type, DIET learns two probabilities:
(i) Pc,t: the probability that the triggering condition of an
exception with class c is of type t, and (ii) Pw,t: the prob-
ability that the triggering condition of an exception containing
keyword w in its error message is of type t. In the detection
phase, for a given root exception, DIET employs the above
probabilities to examine whether its exception class and error
message imply different triggering condition types. Note that,
DIET focuses on root exceptions because they usually describe
the triggering conditions more accurately than their wrapper
exceptions. DIET identifies root exceptions by finding the ones
that have no cause exceptions.

In the DIET design and experiment, we use the five trig-
gering condition types summarized in §IV-A, i.e., network
error, file system error, out of resource, untimely interrupt,
and semantic condition. We further use all the 210 eBugs in
our empirical study to learn Pc,t and Pw,t.

Learn Pc,t: We first extract the root exception’s class ci
and its corresponding triggering condition type ti from each
studied eBug ei. This step generates 210 pairs of (ci, ti). For
each exception class c in these 210 pairs, the probability that
c’s triggering condition is of type t is computed using the
following equation:

Pc,t =
number of (ci, tj) where ci = c, ti = t

number of (ci, ti) where ci = c
(1)

Learn Pw,t: We first extract the root exception’s error
message mi and its triggering condition type ti from each
studied eBug ei. Since the root exceptions in 44 eBugs do
not have error messages, this step generates 166 pairs of
(mi, ti). Next, DIET extracts the unique keywords from each
error message. Note that, DIET does not consider numbers,
conjunctions, determiners, and adverbs as keywords because
they do not reflect the essence of triggering conditions. For
each (mi, ti) pair, DIET can generates multiple (wi,j , ti) pairs,

https://issues.apache.org/jira/browse/ZOOKEEPER-2757
https://issues.apache.org/jira/browse/MAPREDUCE-5251
https://issues.apache.org/jira/browse/HBASE-3164
https://issues.apache.org/jira/browse/YARN-5103


0

20

40

60

Network
Error

File System
Error

Out of
Resource

Untimely
Interrupt

Semantic
Condition

Pr
ob

ab
ili

ty
 (%

)
𝑷𝒄,𝒕 𝑷𝒎,𝒕

t

Fig. 8. The Pc,t and Pm,t of an exception. For example, when t is network
error, Pc,t is 60% and Pm,t is 40%. The overlapping areas are highlighted
with the dashed boxes. The total overlap is 60%.

where wi,j denotes the jth unique keyword extracted from
message mi. For each keyword w in all these (wi,j , ti) pairs,
the probability that the triggering condition of keyword w is
of type t is computed using the following equation:

Pw,t =
number of (wi,j , ti) where wi,j = w, ti = t

number of (wi,j , ti) where wi,j = w
(2)

Detect inaccurate exceptions: Given a target system, DIET
extracts all its root exceptions, which have no cause excep-
tions. DIET then analyzes each root exception as follows.

First, DIET extracts the root exception’s class c, and looks
up the learned probability Pc,t for each triggering condition
type t summarized in §IV-A, which indicates how likely the
triggering condition of the exception is of type t.

Second, DIET extracts the exception error message m, and
unique keywords (w1, ..., wn) from the error message m. For
each keyword wi, DIET looks up the learned probability Pwi,t

for each triggering condition type t, which indicates how
likely the triggering condition of keyword wi is of type t.
DIET computes the probability that the triggering condition
of exception e is of type t by averaging Pwi,t for all unique
keywords in the error message m.

Pm,t =

∑
wi∈m Pwi,t

n
(3)

Finally, DIET uses the following equation to compute the
probability that the root exception’s class and error message
imply the same triggering condition type:

Psame-type =
∑

t∈ Five types

min(Pc,t, Pm,t) (4)

Intuitively, Psame-type is the minimal common probability for
all five triggering condition types. As shown in Figure 8,
Psame-type can be represented as the overlapping area when
plotting the Pc,t and the Pm,t for all five condition types in
the same histogram. The smaller Psame-type is, the more likely
the root exception’s class and error message imply different
types of triggering conditions, and the more likely the root
exception is inaccurate.

2) Experiments on Cloud Systems: We evaluate DIET using
the latest versions of the studied systems (Table XI). For
these cloud systems, DIET extracts 18,125 exceptions in total
(Row Throw), and 5,905 of them are considered as root
exceptions (Row Root ex.). For each root exception, DIET

TABLE XI
APPLYING DIET ON REAL-WORLD CLOUD SYSTEMS

System Cassandra Hadoop† HBase ZooKeeper Total
(Version) (3.11) (3.1.2) (2.1.4) (2.4.14)

Throw 2,823 9,853 5,020 429 18,125
Root ex. 1,282 3,090 1,374 159 5,905
Calculated 550 1,579 716 84 2,929
Reported 100 136 73 5 314
Candidate 9 20 2 0 31

† Hadoop includes Hadoop common, HDFS, MapReduce, and YARN.

TABLE XII
BUGS AND BAD PRACTICES DETECTED BY DIET

System Bug Bad Practice
Confirmed Confirmed Pending Rejected

Cassandra 0 8∗ 1 0
Hadoop 2 (1 fixed) 13 (9 fixed) 2 3
HBase 0 0 0 2

ZooKeeper 0 0 0 0

Total 2 (1 fixed) 21 (9 fixed) 3 5

∗ Cassandra developers will fix six out of eight confirmed bad practices
in the next major update.

calculates its Psame-type using Equation 4 (Row Calculated).
If its Psame-type ≤ 0.2 (a configurable threshold), DIET will
report it as an inaccurate exception. Finally, DIET reports 314
inaccurate exceptions (Row Reported). We manually inspected
all the reports, and identified 31 candidates for real inaccurate
exceptions (Row Candidate). Note that, DIET fails to calculate
Psame-type for half of the root exceptions (Row Calculated), and
DIET’s false positive rate is high (283 out of 314 reported
exceptions). This is mainly because we use only a small dataset
(the studied 210 eBugs) to train DIET, and many exception
classes and keywords of error messages in our experimental
subjects are not contained in these 210 eBugs. This can be
improved by training DIET with a larger dataset of eBugs.

Among the 31 candidates, we found two eBugs in which
the inaccurate exceptions can cause failure symptoms. The
remaining 29 candidates are bad practices, in which their
exception classes and error messages are indeed misleading.
Although a bad practice has not caused failure symptoms,
it may introduce eBugs in the future because it is difficult
to correctly handle an inaccurate exception. For example,
since the inaccurate exceptions in eBugs HDFS-8224 and
HBASE-3164 (discussed in §V-A1) are misleading, when
developers implemented the corresponding exception handlers
later, the exceptions were not handled properly.

We report all these bugs and bad practices to developers
of these cloud systems. So far, developers have confirmed the
two bugs and 21 bad practices (Table XII). More importantly,
all of these 23 confirmed issues are “previously-unknown”. At
the time of writing, developers have fixed 10 issues, and will
fix another six issues in next major updates.

https://issues.apache.org/jira/browse/HDFS-8224
https://issues.apache.org/jira/browse/HBASE-3164


Bugs: DIET detected two bugs, which are confirmed by the
developers. Both eBugs are caused by using incorrect classes.
For example, in one of them, HADOOP-16295, a DataNode
throws an IOException when it is interrupted during file
renaming. This leads to a checking of disk health, which is
necessary only when the IOException is triggered by a file
system error, e.g., when the renaming actually fails.

These bugs highlight the importance of throwing exceptions
with accurate classes. When the exception class does not
match its triggering condition, the system may misbehave
in two ways. First, the unintended handling operations may
be executed, such as both bugs found by DIET. Second, the
intended handling operations may be skipped. Although DIET
has not found any new bugs with this symptom, they do exist
in our eBugs dataset, e.g., CASSANDRA-11448.

Bad practices: DIET detected 29 bad practices, where
21 have been confirmed by developers. Although these bad
practices have not caused any failure symptoms, developers
act proactively to these reported bad practices. For example,
Hadoop developers have fixed nine out of thirteen confirmed
bad practices [38], and Cassandra developers will fix six out
of eight confirmed bad practices in their next major update
[39]–[43]. Developers rejected five bad practices, because they
believed that these reported candidates work as intended. For
example, in HBase, a RuntimeException is used to represent
a file system error. Developers thought it is a norm in HBase
to use RuntimeException for a fatal file system error [44].

As a preliminary attempt to detect eBugs in cloud systems,
DIET has found many unknown issues in popular and mature
cloud systems. We believe that, by integrating other findings
in our study, DIET can be further extended to detect more
eBugs and bad practices. For instance, by integrating Finding 7
and exception flow analysis [30]–[35], DIET can help detect
exception handlers that apply the same handling to exceptions
triggered by different condition types, which is an indicator
for overly-general reaction eBugs (Finding 7).

VIII. RELATED WORK

In this section, we discuss related work that are not dis-
cussed in previous sections.

EBug studies in other systems: Prior studies have exam-
ined the root causes of eBugs in general systems and Android
applications from source code patterns [5]–[8]. These studies
provide valuable insights on developers’ common mistakes
when handling exceptions in their target systems. However,
due to the inherent system differences, their findings may not
be applicable to cloud systems. Some studies have analyzed
the relation between eBugs and certain language features, e.g.,
aspect-oriented programming [9] and Android abstractions [6].
Other studies try to understand developers’ perception on
eBugs [5], [6], and the common exception handling practices
[45]–[47]. Complementary to these studies, our eBug study
focuses on analyzing the relations between triggering condi-
tions and the root causes in cloud systems, which are critical
in eBug exposure and detection.

EBug detection: A few tools have been designed to detect
eBugs. Aspirator detects empty or incomplete (e.g., contain-
ing “TODO”) exception handlers, as well as overly-general
handlers that abort the whole system [3]. CAR-Miner detects
missing recovery operations by inferring methods that should
have executed together when exceptions occur [36]. EPE
detects incorrect exception propagation by finding exceptions
that are thrown or caught in unintended methods [37]. Unlike
these tools, DIET detects inaccurate exceptions by analyzing
the inconsistency between the triggering conditions inferred
from exception classes and error messages.

Other bug studies: In cloud systems, prior works have
focused on other types of bugs, including general bugs [4],
concurrency bugs [48], crash recovery bugs [19], timeout
related bugs [49], and system failures [3]. They have identified
invaluable observations on different types of bugs, helping im-
prove cloud system reliability in many ways. Complementary
to these studies, our work examines a different and important
threat in cloud systems, i.e., eBugs. We hope the combined
efforts can greatly help developers improve the reliability of
cloud systems.

Previous works have also studied other types of bugs in
general systems [50]–[52]. These studies have inspired lots
of research that combat bugs in various ways [53]–[55]. We
believe our study can help better understand eBugs in cloud
systems and reveal opportunities to alleviate them.

IX. CONCLUSION

In this paper, we present a comprehensive analysis of 210
eBugs in six popular cloud systems, from the perspective
of triggering conditions. Most of these eBugs affect the
availability or integrity of the cloud systems. Through this
study, we have made many interesting findings, which reveal
important opportunities for combating eBugs in cloud systems.
Based on our findings, we develop DIET to detect inaccurate
exceptions in cloud systems. DIET has detected 31 eBugs and
bad practices, and developers have confirmed 23 of them.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
thorough and insightful comments. We are grateful to Dejun
Teng for helping us calculate the proportion of exception-
related code in popular cloud systems. In this work, Haicheng
Chen and Feng Qin were partially supported by National
Science Foundation grants #CNS-1513120 and #CCF-0953759
(CAREER Award). Wensheng Dou and Yanyan Jiang were
partially supported by National Key R&D Program of China
(2017YFB1001800), National Natural Science Foundation of
China (#61732019, #61932021, #61802165), Youth Innova-
tion Promotion Association at Chinese Academy of Sciences,
Alibaba Innovative Research Program, and the Collaborative
Innovation Center of Novel Software Technology and Industri-
alization, Jiangsu, China. Both Haicheng Chen and Wensheng
Dou are the corresponding authors of this paper.

https://issues.apache.org/jira/browse/HADOOP-16295
https://issues.apache.org/jira/browse/CASSANDRA-11448


REFERENCES

[1] Apache Hadoop. [Online]. Available: https://hadoop.apache.org
[2] Advantages of exceptions. [Online]. Available: https://docs.oracle.com/

javase/tutorial/essential/exceptions/advantages.html
[3] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao, Y. Zhang, P. Jain,

and M. Stumm, “Simple testing can prevent most critical failures: An
analysis of production failures in distributed data-intensive systems,”
in Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation, 2014, pp. 249–265.

[4] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake, T. Do,
J. Adityatama, K. J. Eliazar, A. Laksono, J. F. Lukman, V. Martin et al.,
“What bugs live in the cloud? A study of 3000+ issues in cloud systems,”
in Proceedings of the ACM Symposium on Cloud Computing, 2014, pp.
1–14.

[5] F. Ebert, F. Castor, and A. Serebrenik, “An exploratory study on
exception handling bugs in Java programs,” Journal of Systems and
Software, vol. 106, pp. 82–101, 2015.

[6] J. Oliveira, D. Borges, T. Silva, N. Cacho, and F. Castor, “Do Android
developers neglect error handling? A maintenance-centric study on the
relationship between Android abstractions and uncaught exceptions,”
Journal of Systems and Software, vol. 136, pp. 1–18, 2018.

[7] R. Coelho, L. Almeida, G. Gousios, and A. van Deursen, “Unveiling
exception handling bug hazards in Android based on GitHub and Google
code issues,” in Proceedings of the 12th Working Conference on Mining
Software Repositories, 2015, pp. 134–145.

[8] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su, “Large-
scale analysis of framework-specific exceptions in Android Apps,” in
Proceedings of the 40th International Conference on Software Engi-
neering, 2018, pp. 408–419.

[9] R. Coelho, A. Rashid, A. von Staa, J. Noble, U. Kulesza, and C. Lucena,
“A catalogue of bug patterns for exception handling in aspect-oriented
programs,” in Proceedings of the 15th Conference on Pattern Languages
of Programs, 2008, p. 23.

[10] Jira Software. [Online]. Available: https://www.atlassian.com/software/
jira

[11] Apache Cassandra. [Online]. Available: http://cassandra.apache.org
[12] Apache HBase. [Online]. Available: http://hbase.apache.org
[13] HDFS architecture. [Online]. Available: http://hadoop.apache.org/docs/

current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
[14] MapReduce tutorial. [Online]. Available: http://hadoop.apache.org/

docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/
MapReduceTutorial.html

[15] Apache Hadoop YARN. [Online]. Available: http://hadoop.apache.org/
docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

[16] Apache ZooKeeper. [Online]. Available: http://zookeeper.apache.org
[17] EBugs in cloud systems. [Online]. Available: https://hanseychen.github.

io/eBugs/
[18] O. R. Gatla, M. Hameed, M. Zheng, V. Dubeyko, A. Manzanares,

F. Blagojević, C. Guyot, and R. Mateescu, “Towards robust file system
checkers,” in Proceedings of the 16th USENIX Conference on File and
Storage Technologies, 2018, pp. 105–122.

[19] Y. Gao, W. Dou, F. Qin, C. Gao, D. Wang, J. Wei, R. Huang, L. Zhou,
and Y. Wu, “An empirical study on crash recovery bugs in large-scale
distributed systems,” in Proceedings of the 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2018, pp. 539–550.

[20] C. Cadar, D. Dunbar, D. R. Engler et al., “KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs,”
in Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, 2008, pp. 209–224.

[21] P. Godefroid, M. Y. Levin, D. A. Molnar et al., “Automated whitebox
fuzz testing,” in Proceedings of the 16th Network and Distributed System
Security Symposium, 2008, pp. 151–166.

[22] M. Zheng, J. Tucek, D. Huang, F. Qin, M. Lillibridge, E. S. Yang,
B. W. Zhao, and S. Singh, “Torturing databases for fun and profit,”
in Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation, 2014, pp. 449–464.

[23] H. S. Gunawi, T. Do, P. Joshi, P. Alvaro, J. M. Hellerstein, A. C. Arpaci-
Dusseau, R. H. Arpaci-Dusseau, K. Sen, and D. Borthakur, “FATE and
DESTINI: A framework for cloud recovery testing,” in Proceedings
of the 8th USENIX Conference on Networked Systems Design and
Implementation, 2011, pp. 1–18.

[24] R. Alagappan, A. Ganesan, Y. Patel, T. S. Pillai, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau, “Correlated crash vulnerabilities,” in Pro-
ceedings of the 12th USENIX Conference on Operating Systems Design
and Implementation, 2016, pp. 151–167.

[25] H. Liu, X. Wang, G. Li, S. Lu, F. Ye, and C. Tian, “FCatch: Automat-
ically detecting time-of-fault bugs in cloud systems,” in Proceedings
of the 23rd International Conference on Architectural Support for
Programming Languages and Operating Systems, 2018, pp. 419–431.

[26] Jepsen. [Online]. Available: https://jepsen.io/
[27] A. Alquraan, H. Takruri, M. Alfatafta, and S. Al-Kiswany, “An analysis

of network-partitioning failures in cloud systems,” in Proceedings of the
13th USENIX Conference on Operating Systems Design and Implemen-
tation, 2018, pp. 51–68.

[28] T. Leesatapornwongsa, M. Hao, P. Joshi, J. F. Lukman, and H. S.
Gunawi, “SAMC: Semantic-aware model checking for fast discovery
of deep bugs in cloud systems,” in Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation, 2014,
pp. 399–414.

[29] A. Ganesan, R. Alagappan, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Redundancy does not imply fault tolerance: Analysis of dis-
tributed storage reactions to single errors and corruptions,” in Proceed-
ings of the 15th USENIX Conference on File and Storage Technologies,
2017, pp. 149–166.

[30] G. B. de Pádua and W. Shang, “Revisiting exception handling practices
with exception flow analysis,” in Proceedings of 17th International
Working Conference on Source Code Analysis and Manipulation, 2017,
pp. 11–20.

[31] D. Sena, R. Coelho, U. Kulesza, and R. Bonifácio, “Understanding the
exception handling strategies of Java libraries: An empirical study,” in
Proceedings of the 13th International Conference on Mining Software
Repositories, 2016, pp. 212–222.

[32] S. Liang, W. Sun, M. Might, A. Keep, and D. Van Horn, “Pruning,
pushdown exception-flow analysis,” in Proceedings of 14th International
Working Conference on Source Code Analysis and Manipulation, 2014,
pp. 265–274.

[33] H. Melo, R. Coelho, U. Kulesza, and D. Sena, “In-depth characterization
of exception flows in software product lines: An empirical study,”
Journal of Software Engineering Research and Development, vol. 1,
no. 1, p. 3, 2013.

[34] P. Prabhu, N. Maeda, G. Balakrishnan, F. Ivančić, and A. Gupta,
“Interprocedural exception analysis for C++,” in Proceedings of the 25th
European Conference on Object-Oriented Programming, 2011, pp. 583–
608.

[35] M. Bravenboer and Y. Smaragdakis, “Exception analysis and points-
to analysis: Better together,” in Proceedings of the 18th International
Symposium on Software Testing and Analysis, 2009, pp. 1–12.

[36] S. Thummalapenta and T. Xie, “Mining exception-handling rules as
sequence association rules,” in Proceedings of the 31st International
Conference on Software Engineering, 2009, pp. 496–506.

[37] T. Montenegro, H. Melo, R. Coelho, and E. Barbosa, “Improving
developers awareness of the exception handling policy,” in Proceedings
of the 25th International Conference on Software Analysis, Evolution
and Reengineering, 2018, pp. 413–422.

[38] HDFS-14486. [Online]. Available: https://issues.apache.org/jira/browse/
HDFS-14486

[39] CASSANDRA-15111. [Online]. Available: https://issues.apache.org/
jira/browse/CASSANDRA-15111

[40] CASSANDRA-15112. [Online]. Available: https://issues.apache.org/
jira/browse/CASSANDRA-15112

[41] CASSANDRA-15114. [Online]. Available: https://issues.apache.org/
jira/browse/CASSANDRA-15114

[42] CASSANDRA-15116. [Online]. Available: https://issues.apache.org/
jira/browse/CASSANDRA-15116

[43] CASSANDRA-15117. [Online]. Available: https://issues.apache.org/
jira/browse/CASSANDRA-15117

[44] HBASE-22369. [Online]. Available: https://issues.apache.org/jira/
browse/HBASE-22369

[45] S. Nakshatri, M. Hegde, and S. Thandra, “Analysis of exception handling
patterns in Java projects: An empirical study,” in Proceedings of the
13th International Conference on Mining Software Repositories, 2016,
pp. 500–503.

[46] M. Monperrus, M. G. de Montauzan, B. Cornu, R. Marvie, and
R. Rouvoy, “Challenging analytical knowledge on exception-handling:
An empirical study of 32 Java software packages,” Tech. Rep. hal-
01093908, 2014.

https://hadoop.apache.org
https://docs.oracle.com/javase/tutorial/essential/exceptions/advantages.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/advantages.html
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
http://cassandra.apache.org
http://hbase.apache.org
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://zookeeper.apache.org
https://hanseychen.github.io/eBugs/
https://hanseychen.github.io/eBugs/
https://jepsen.io/
https://issues.apache.org/jira/browse/HDFS-14486
https://issues.apache.org/jira/browse/HDFS-14486
https://issues.apache.org/jira/browse/CASSANDRA-15111
https://issues.apache.org/jira/browse/CASSANDRA-15111
https://issues.apache.org/jira/browse/CASSANDRA-15112
https://issues.apache.org/jira/browse/CASSANDRA-15112
https://issues.apache.org/jira/browse/CASSANDRA-15114
https://issues.apache.org/jira/browse/CASSANDRA-15114
https://issues.apache.org/jira/browse/CASSANDRA-15116
https://issues.apache.org/jira/browse/CASSANDRA-15116
https://issues.apache.org/jira/browse/CASSANDRA-15117
https://issues.apache.org/jira/browse/CASSANDRA-15117
https://issues.apache.org/jira/browse/HBASE-22369
https://issues.apache.org/jira/browse/HBASE-22369


[47] M. B. Kery, C. Le Goues, and B. A. Myers, “Examining programmer
practices for locally handling exceptions,” in Proceedings of the 13th
International Conference on Mining Software Repositories, 2016, pp.
484–487.

[48] T. Leesatapornwongsa, J. F. Lukman, S. Lu, and H. S. Gunawi, “TaxDC:
A taxonomy of non-deterministic concurrency bugs in datacenter dis-
tributed systems,” in Proceedings of the 21st International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2016, pp. 517–530.

[49] T. Dai, J. He, X. Gu, and S. Lu, “Understanding real-world timeout prob-
lems in cloud server systems,” in Proceeding of the IEEE International
Conference on Cloud Engineering, 2018, pp. 1–11.

[50] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: A
comprehensive study on real world concurrency bug characteristics,”
in Proceedings of the 13th International Conference on Architectural
Support for Programming Languages and Operating Systems, 2008, pp.
329–339.

[51] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical

study of operating systems errors,” in Proceedings of the 18th Sympo-
sium on Operating Systems Principles, 2001, pp. 73–88.

[52] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairavasundaram, “How
do fixes become bugs?” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, 2011, pp. 26–36.

[53] S. Park, S. Lu, and Y. Zhou, “CTrigger: Exposing atomicity violation
bugs from their hiding places,” in Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2009, pp. 25–36.

[54] W. Zhang, C. Sun, and S. Lu, “ConMem: Detecting severe concurrency
bugs through an effect-oriented approach,” in Proceedings of the 15th
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2010, pp. 179–192.

[55] B. Kasikci, B. Schubert, C. Pereira, G. Pokam, and G. Candea, “Failure
sketching: A technique for automated root cause diagnosis of in-
production failures,” in Proceedings of the 25th Symposium on Operating
Systems Principles, 2015, pp. 344–360.


