
Rewriting High-Level Spreadsheet Structures
into Higher-Order Functional Programs

Florian Biermann�?1[0000−0002−5814−3202], Wensheng
Dou??2[0000−0002−3323−0449], and Peter Sestoft1[0000−0002−5843−6021]

1 Computer Science Department, IT University of Copenhagen
{fbie, sestoft}@itu.dk

2 State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences, Beijing
wsdou@otcaix.iscas.ac.cn

Abstract. Spreadsheets are used heavily in industry and academia. Of-
ten, spreadsheet models are developed for years and their complexity
grows vastly beyond what the paradigm was originally conceived for.
Such complexity often comes at the cost of recalculation performance.
However, spreadsheet models usually have some high-level structure that
can be used to improve performance by performing independent compu-
tation in parallel. In this paper, we devise rules for rewriting high-level
spreadsheet structure in the form of so-called cell arrays into higher-order
functional programs that can be easily parallelized on multicore proces-
sors. We implement our rule set for the experimental Funcalc spread-
sheet engine which already implements parallelizable higher-order ar-
ray functions as well as user-defined higher-order functions. Benchmarks
show that our rewriting approach improves recalculation performance for
spreadsheets that are dominated by cell arrays.

1 Introduction

Spreadsheets are abundant in research and industry and used heavily by pro-
fessionals who are not educated as programmers. Spreadsheets often become
highly complex over time. Not only is it hard to maintain an understanding of
the underlying model, but this complexity can also lead to slow recalculation of
the entire spreadsheet. For large and complex spreadsheet models, recalculation
performance may be critical.

Dou et al. [6] report that 69% of all spreadsheets with formulas in the En-
ron [10] and EUSES [8] spreadsheet corpora contain cell arrays. A cell array is
a rectangular block of copy equivalent formulas [15], like the cell areas B2:F6
and B8:F12 in Fig. 2. Such a cell array is created when the spreadsheet user

? Supported by the Sino-Danish Center for Education and Research.
?? Supported by the National Natural Science Foundation of China (61702490) and

Beijing Natural Science Foundation (4164104).

writes a formula, typically with a carefully crafted mix of absolute and relative
references, and copies it to a rectangular cell range.

Spreadsheets are first-order purely functional programs [2]. In purely func-
tional programs, all values are immutable. Immutability guarantees data-race
freedom and therefore allows for easy parallelization and hence a speedup of
disjoint computations. If we can detect formula cells on a spreadsheet that do
not depend on each other, we can safely compute these in parallel.

In functional languages, disjoint computations on values of an array can be
expressed explicitly by means of higher-order functions. For instance, the higher-
order function map explicitly applies a pure function to each element of an array
individually. Hence, map can easily be parallelized.

In this paper, we design a source-to-source rewriting semantics for converting
cell array computations into parallel higher-order functional programs to improve
recalculation performance. We do this by correlating cell array structure with
higher-order array functions.

Our rewriting semantics uses a common feature of spreadsheet software,
called array formulas. An array formula must evaluate to an array of the same
size and shape as the spreadsheet cell range that contains the formula. The array
is then unpacked and its scalar values are placed directly in the cells according
to their position in the array, such that the containing array disappears.

We target the experimental spreadsheet engine Funcalc [17]. Funcalc provides
higher-order functions on immutable two-dimensional arrays, which correspond
to cell ranges, as well as efficient sheet-defined higher-order functions. For our
purpose, we extend Funcalc with additional functions on arrays.

To our knowledge, there is no literature on exploiting parallelism in cell
arrays to improve recalculation performance. Some researchers have investigated
whole-sheet graph parallelism on spreadsheets [19, 20, 21]. Prior work on high-
level spreadsheet array structure has either focused on making the user aware of
high-level models [11, 15, 16]; on correcting errors in cell formulas by analyzing
the structure around given cells [3, 4, 6, 12]; or on synthesizing templates from
spreadsheets to allow for reuse of the high-level structure [1, 13].

With our rewriting semantics, Funcalc can exploit implicit parallelism in
spreadsheets dominated by large or computation-heavy cell arrays. We compare
the performance of our approach on two idealized and six synthetic spreadsheets
as well as twelve real-world spreadsheets from the EUSES [8] corpus. Our results
show that we can indeed improve spreadsheet recalculation by parallelizing cell
array computations. However, our results also show that the achievable speedup
is limited by the sequential dependencies of the spreadsheet models.

2 From Cell Arrays to Higher-Order Functions

Our idea is based on the observation that the references in cell arrays often
form a pattern that corresponds to one of two higher-order functions on 2D
arrays [20, 21]. We define our variants of these two functions with variadic arity
k to make them as general as possible.

The first function is commonly known as map. It takes as arguments a k-ary
function f and k arrays x1 through xk of n rows and m columns each. We say
they are of shape n×m. We require at least one argument array, i.e. k ≥ 1. The
result of the function is a new n×m array containing the results of applying f
to the k elements of the input arrays at the same index:

MAP(f, x1, . . . , xk) = X, where X[i, j] = f(x1[i, j], . . . , xk[i, j])

The other function is commonly known as scan or generalized prefix sum. We
use a variant on 2D arrays that computes a wavefront prefix sum for arbitrary
functions. It takes a (k+3)-ary function f , a n×1 single-column array γ, a scalar
value δ and a 1 ×m single-row array ρ as well as, again, k arrays x1, . . . , xk of
shape n×m. Its result is a new n×m array PREFIX(f, γ, δ, ρ, x1, . . . , xk) = X,
where:

X[1, 1] = f(γ[1], δ, ρ[1], x1[1, 1], . . . , xk[1, 1]) (1)
X[1, j] = f(X[1, j − 1], ρ[j − 1], ρ[j], x1[1, j], . . . , xk[1, j]) (2)
X[i, 1] = f(γ[i], γ[i− 1], X[j − 1, 1], x1[i, 1], . . . , xk[i, 1]) (3)
X[i, j] = f(X[i− 1, j], X[i− 1, j − 1], X[i, j − 1], x1[i, j], . . . , xk[i, j]) (4)

Here we allow k = 0, meaning only the input arrays γ and ρ as well as the scalar
δ are required. We use the values from γ, ρ and δ as if they were positioned
around the upper and left fringes of the original arrays x1 . . . xk, see also Fig. 6.
Equation (1) defines the first element of X at (i, j) = (1, 1), on which all other
values of X depend. Since no values precede it, we must refer to values from γ, δ
and ρ instead. Equation (2) defines the first row and hence refers to ρ; equation
(3) defines the first column and therefore refers to γ. Finally, equation (4) is the
general case for all remaining index pairs (i, j).

2.1 A Formal Spreadsheet Language

For presentation purposes, we use a simplified formal spreadsheet language, λ-
calc, as shown in Fig. 1. The e form includes lambda expressions of arbitrary
arity and with named parameters. All expressions must be closed. Users are
only allowed to enter expressions in u, which is a subset of e without anonymous
functions and variables. References r to cells and to cell ranges are shown in
the R1C1 format, but translated to the “usual” A1 format in examples. For
instance, the absolute reference R6C2 in R1C1 format would in A1 format be
B6, referring to column 2, row 6. Row-absolute column-relative reference R6C[2]
in R1C1 format would in A1 format be G$6 if the reference appeared anywhere
in column E — that being column 5 and so the reference would be to column
5 + 2 = 7, which is column G. See also function lookup[[]] in Sec. 3.1.

Function φ ∈ r → e maps a cell address r to the formula e = φ(r) in that
cell. When r1 : r2 is a cell array of copy equivalent formulas, we write φ(r1 : r2)
for the common formula (see Sec. 3.1).

n ::= Number
t ::= String
i ::= Integer
f ::= λ(x, . . .).e Anonymous function.
| F Built-in function.

v ::= n | t
| err(t) Error value.
| [[v; . . .] . . .] Row-major 2D-array.

r ::= R[i]C[i] Relative cell address.
| R[i]C i Row-relative.
| R i C[i] Column-relative.
| R i C i Absolute.

e ::= v | r | f
| x Variable name.
| r :r Cell range.
| IF(e, e, e) Conditional.
| f(e, . . .) Function application.
| e⊕ e Short-hand for ⊕ (e, e).

u ::= v | r | r :r | IF(u, u, u) | F (u, . . .) | u⊕ u

Fig. 1. The λ-calc syntax with variables and lambda expressions. Form u is a subset
of e and contains “user expressions”, i.e. expressions that a user is allowed to write.

2.2 Example: DNA Sequence Alignment

We illustrate the rewriting of cell arrays with the spreadsheet shown in Fig. 2. It
computes the optimal local alignment of two DNA sequences using the standard
algorithm, based on dynamic programming (Smith-Waterman [18]). A substi-
tution matrix s is defined in cell range B2:F6 (upper gray cell area), and the
scoring matrix H in cell range B8:F12 (lower gray cell area). The substitution
matrix assigns score +3 to identical nucleotides (DNA “letters”) and score −3
to distinct nucleotides.

The scoring matrix (B8:F12) computes the best score H(i, j) for any align-
ment between the i-length prefix of one sequence with the j-length prefix of the
other. This can be defined recursively as:

H(i, j) = max(H(i− 1, j − 1) + s(i, j), H(i− 1, j)− 2, H(i, j − 1)− 2, 0)

By backtracking through the scoring matrix H from its maximal entry, one
obtains the optimal local alignment of the two sequences.

2.3 Intuitive Rewriting of Cell Arrays

First consider the range B2:F6, whose formulas are copy equivalent [15]: it could
be filled by copying the formula in B2 to B2:F6 with automatic adjustment of
relative row and column references. (The B8:F12 formulas are copy equivalent
also). In R1C1 reference format, the range B2:F6 (upper gray cell area) can be
written as:

φ(R2C2 :R6C6) := IF(R[0]C1 = R1C[0], 3, −3)

The row- and column-relative structure of the two references builds a cross-
product of the column and the row containing the input sequences. While it is

A B C D E F

1 A G C T A

2 T = IF($A2 = B$1, 3, −3) = IF($A2 = F$1, 3, −3)

3 G

4 T

5 T

6 T = IF($A6 = B$1, 3, −3) = IF($A6 = F$1, 3, −3)

7 0 0 0 0 0 0

8 0 = MAX(A7 + B2, A8− 2, B7− 2, 0) = MAX(E7 + F2, E8− 2, F7− 2, 0)

9 0

10 0

11 0

12 0 = MAX(A12 + B6, A11− 2, B11− 2, 0) = MAX(E12 + F6, E11− 2, F11− 2, 0)

Fig. 2. A spreadsheet to compute a best local DNA sequence alignment. One DNA
sequence is in cells B1:F1, the other in cells A2:A6. Cells B2:F6 defines a substitution
matrix. Cells B8:F12 compute the scoring matrix. Ellipses denote repeated formulas.
Cell areas with light gray background have the same formula.

straightforward to build such an ad-hoc cell structure, this has two disadvan-
tages. First, this implementation does not generalize to sequences with more
than five elements. Second, and more important to us, the formula itself does
not capture the structure of the computation. This structure is implicit in the
cell references and only emerges from the context — the entire spreadsheet and
the formula’s location in it — in which it is computed.

Ideally, we would like to retain high-level information about the computation
that we want to perform inside the expression, and also find the most general
way to express it. Our intuition as functional programmers is to rewrite the
formulas as a 2D MAP over repeated row and column values:

φ(R2C2 :R6C6) := {MAP(λ(x, y).IF(x = y, 3, −3)),
HREP(COLS(R1C2 :R1C6), R2C1 :R6C1),
VREP(ROWS(R2C1 :R6C1), R1C2 :R1C6))}

The curly braces around the expression denote an array formula: a formula that
evaluates to an array and whose values are unpacked into the individual cells of
the cell array R2C2:R6C6 (B2:F6), as described in Sec. 1.

Now, this expression may look convoluted at first sight, especially to someone
without a functional programming background. But indeed, it does exactly what
the entire cell array B2:F6 did by replicating the formula:

– HREP(n, x) creates a new two-dimensional array of size n × COLS(x) by re-
peating x exactly n times.

– VREP(m,x) creates a new two-dimensional array of size ROWS(x)×m; it works
exactly like HREP but in the vertical direction.

– MAP(f, x1, x2) combines x1 and x2 pointwise by applying f .

Concretely, the new expression extends the one-dimensional ranges B1:F1 and
A2:A6 into two matrices of size 5 × 5 and combines them pointwise using the
function originally written in each cell.

What have we gained from this transformation? First, we have found a gener-
alized expression of the algorithm that was originally distributed over a number
of cells, and we can use it to write a more general version of the algorithm.

Second, and more importantly, we now have an expression which describes
the structure of the computation independently from its context. This is use-
ful, as we have recovered some high-level information that we can exploit to
improve performance: there is no dependency between the individual points in
this combination of two matrices, or two-dimensional arrays. Hence, it is now
straightforward to parallelize the computation of the result matrix.

2.4 Different Kinds of Cell Arrays

Now consider the cell array B8:F12 (lower gray cell area), which contains the
following formula in R1C1 format:

φ(R8C2 :R12C6) := MAX(R[−1]C[−1] + R[1]C[−6], R[0]C[−1]− 2, R[−1]C[0]− 2, 0)

We cannot use MAP to rewrite this cell array. There is a sequential dependency
between the cells of the cell array because the cell E10 (R10C5) depends on E9
(R9C5), D10 (R10C4) and D9 (R9C4). These cells are inside the cell array itself.
We therefore call this kind of cell array transitive, as opposed to intransitive cell
arrays, which can be rewritten by using MAP, as in Sec. 2.3. Hence, we need to
target the second higher-order function on arrays, namely PREFIX:

φ(R8C2 :R12C6) := {PREFIX(λ(x, y, z, w).MAX(y + w, x− 2, z− 2, 0),
R8C1 :R12C1,
R7C1,
R8C1 :R8C6,
R2C2 :R6C6)}

Rewriting transitive cell arrays requires a bit more work: a transitive cell array
could be written in either orientation (e.g. starting at the bottom right instead
at the top left); and cell references in the expression might not occur in the same
order as required by the semantics of PREFIX for the argument function, as we
can see in our rewritten expression above. Hence, we must order the variable
names correctly.

In the remainder of this paper, we formally define these properties of cell ar-
rays and show how to rewrite them using a straightforward rewriting semantics.

3 Rewriting Cell Arrays

The overall idea of rewriting cell arrays, is to (1) rewrite the cell array’s expres-
sion by systematically replacing non-absolute cell references with fresh variable

names, consistently using the same variable name for multiple occurrences of the
same cell reference; (2) use the fresh variable names as arguments to an anony-
mous function whose body is the rewritten expression; (3) infer an input range
for each replaced cell reference by looking it up at the upper left and lower right
cell addresses of the array that we are rewriting; and (4) create a new expression
in which we pass the anonymous function as an argument to a higher-order array
function, together with the inferred input cell ranges.

For brevity, we gloss over rotated and mirrored cases of transitive cell refer-
ences. Hence, we assume that all transitive references are of the form R[−1]C[0],
R[−1]C[−1] or R[0]C[−1], referring to the previous row, same column; previous
row, previous column; or same row, previous column. It is straightforward to
implement rules for rotated and mirrored cases via array reversal in either di-
mension, or both.

3.1 Cell Arrays and Transitive and Intransitive Cell References

The formal definition of intransitive and transitive cell references extends set-
notation to operate on cells and cell ranges. To state that a cell reference r is
inside a cell array r1 :r2, we simply write r ∈ r1 :r2. A cell array is a cell range
r1 : r2 satisfying ∀ri, rj ∈ r1 : r2. φ(ri) = φ(rj), i.e. all cells of the cell range are
copy equivalent [15].

Relative cell references (first argument) are converted into absolute cell ref-
erences by adding the row- and column-offset to their own location in the sheet
(second argument), as defined by the function lookup:

lookup[[R[ir1]C[ic1], R ir2 C ic2]] = R (ir1 + ir2) C (ic1 + ic2)
lookup[[R ir1 C[ic1], R ir2 C ic2]] = R ir1 C (ic1 + ic2)
lookup[[R[ir1]C ic1 , R ir2 C ic2]] = R (ir1 + ir2) C ic1
lookup[[R ir1 C ic1 ,]] = R ir1 C ic1

A cell reference is intransitive if it never refers back into the cell array, no matter
the location of the containing cell. We formulate this as follows:

{lookup[[r, r0]] | r0 ∈ r1 :r2} ∩ r1 :r2 = ∅ ⇒ r is intransitive in r1 :r2.

Conversely, we can define transitive cell references by inverting the equation:

{lookup[[r, r0]] | r0 ∈ r1 :r2} ∩ r1 :r2 6= ∅ ⇒ r is transitive in r1 :r2.

Absolute references RiCi are neither transitive nor intransitive and we treat them
like constants during rewriting.

3.2 Rewriting Semantics

We use reducible expressions and a reduction relation to formalize the rewrit-
ing process. The relation in Fig. 4 defines rewriting cell arrays from plain

l ::= v | x | l ⊕ l | IF(l, l, l) | F (l, . . .) | RiCi :RiCi | RiCi

L ::= ◦ | L ⊕ u | l ⊕ L | F (l, . . . ,L, u, . . .)
| IF(L, u, u) | IF(l, L, u) | IF(l, l, L)

Γ ::= more([(r, x) . . .]︸ ︷︷ ︸
Transitive

; [(r, x) . . .]︸ ︷︷ ︸
Intransitive

; φ(r :r) := L) | done(φ(r :r) := {e})

Fig. 3. Rewriting context and transformation language for λ-calc. The form l is a
subset of e, with only absolute cell references.

spreadsheet formulas to higher-order functional programs in λ-calc. More pre-
cisely, the relation rewrites an expression u to an expression l without relative
references; see Fig. 3.

The form Γ describes a rewriting in progress. It is either more with transitive
cell references and their substitutions, intransitive cell references and their sub-
stitutions, a cell range, and the expression that it contains; or it is done with a
cell range and its rewritten expression. We use (rT , xT) to denote a substitution
pair of a transitive cell reference and (rI , xI) to denote a substitution pair of an
intransitive cell reference.

In plain English, the rules in Fig. 4 perform the following operations:

– Rule exist-i replaces a cell reference r with an already existing variable x
from the list of intransitive substitutions.

– Rule exist-t replaces a cell reference r with an already existing variable x
from the list of transitive substitutions.

– Rule subst-i replaces an intransitive cell reference r with a fresh variable x
and stores the substitution (r, x) in the list of intransitive substitutions.

– Rule subst-t replaces a transitive cell reference r with a fresh variable x
and stores the substitution (r, x) in the list of transitive substitutions.

– Rule synth-map takes a rewritten expression l and wraps it in a λ-expression
whose variables are the variable names from the intransitive substitutions. It
places the resulting function as first argument to a call to MAP; the remaining
arguments are the substituted cell references, converted to cell ranges by
performing a lookup from rul and rlr for each of them and extended to
match the cell array’s size. The result is an expression that can be plugged
into an array formula.

– Rule synth-pfx takes a rewritten expression l and wraps it in a λ-expression
whose first three parameters are the variable names from the list of “sorted”
transitive substitutions. The remaining parameters are taken from the in-
transitive substitutions, as in rule synth-map. The rule constructs the ini-
tial row- and column-array by combining the result of the lookup of the first
and last transitive reference on rul and the row, or column, of rlr. The tran-
sitive cell references are converted as in rule synth-map. The result is an
expression that can be plugged into an array formula.

Both rule synth-map and synth-pfx make use of the meta-function extd, short
for “extend”. It returns an expression that, if necessary, replicates the intransitive
input arrays to match the cell array r1 :r2 being rewritten:

extd [[rI1 :rI2 , r1 :r2]] = VREP(n, rI1 :rI2) where n = rows[[r1 :r2]],
rows[[rI1 :rI2]] = 1

extd [[rI1 :rI2 , r1 :r2]] = HREP(m, rI1 :rI2) where m = columns[[r1 :r2]],
columns[[rI1 :rI2]] = 1

extd [[rI1 :rI2 , r1 :r2]] = rI1 :rI2 otherwise.

Finally, rule synth-pfx uses the meta-functions fill and sort. We require that
there are three transitive substitutions in the order R[0]C[−1], R[−1]C[−1] and
R[−1]C[0]. Therefore, fill generates placeholder substitutions for each not encoun-
tered transitive reference; sort sorts the three substitutions after their respective
references, as described above.

3.3 Preemptive Cycle Detection

Rewriting cell arrays to array formulas changes the dependency structure of the
spreadsheet: where before a cell of the cell array may only have depended on a
single cell the of input range, it now depends on the entire range. The rewritten
cell has become part of an unpacked array, whose formula explicitly references
the aforementioned range. It is easy to come up with an example that would
lead to the creation of cyclic dependencies if rewritten. We require two or more
cell arrays that refer to cells of each other. Rewriting the contrived spreadsheet
shown in Fig. 5 leads to the creation of cyclic dependencies.

To avoid this, we perform a preemptive detection of cyclic references. We
walk the reference graph from each intransitive cell reference and each cell from
the initial row and column, and check that we never arrive at a cell that is part
of the cell array. We use a depth-first search without repetition to detect possible
cyclic references. If we detect one, we do not rewrite the cell array.

3.4 Correctness

We do not currently have a formal proof of correctness for our rewriting seman-
tics. However, the slightly informal semantics in Sec. 2 for MAP and PREFIX are
carefully chosen to capture the semantics of the original cell array structure, so
we believe that our rewriting semantics are correct. The proof would require a
formal semantics for spreadsheet recalculation and functions on arrays, which is
beyond the scope of this paper.

With a formal semantics, we believe that one can show that rewritten cell
arrays are observationally equivalent to the original formulas for cell arrays with
and without transitive cell references and hence prove that the rewriting seman-
tics is correct. More formally, if

more([]; []; φ(r1 :r2) := u) done(φ(r1 :r2) := {e})

and φ(r1 : r2) := u evaluates to v, then we want to prove that φ(r1 : r2) := {e}
also evaluates to v.

more([(rT , xT) . . .]; [(rI1 , x
I
1) . . . (r, x)(rI2 , x

I
2) . . .];φ(rul :rlr) := L[r]) [exist-i]

more([(rT , xT) . . .]; [(rI1 , x
I
1) . . . (r, x)(rI2 , x

I
2) . . .];φ(rul :rlr) := L[x])

more([(rT1 , x
T
1) . . . (r, x)(rT2 , x

T
2) . . .]; [(rI , xI) . . .];φ(rul :rlr) := L[r]) [exist-t]

more([(rT1 , x
T
1) . . . (r, x)(rT2 , x

T
2) . . .]; [(rI , xI) . . .];φ(rul :rlr) := L[x])

more([(rT , xT) . . .]; [(rI , xI) . . .];φ(rul :rlr) := L[r]) [subst-i]
more([(rT , xT) . . .]; [(rI , xI) . . . (r, x)];φ(rul :rlr) := L[x])

where r is intransitive in rul :rlr
x fresh

more([(rT , xT) . . .]; [(rI , xI) . . .];φ(rul :rlr) := L[r]) [subst-t]
more([(rT , xT) . . . (r, x)]; [(rI , xI) . . .];φ(rul :rlr) := L[x])

where r is transitive in rul :rlr
x fresh

more([]; [(rI , xI) . . .];φ(rul :rlr) := l) [synth-map]

done(φ(rul :rlr) := {MAP(λ(xI , . . .).l, rI+ul :rI+lr , . . .)})
where [(rI , xI) . . .] is non-empty

rIul . . . = lookup[[rI , rul]] . . .
rIlr . . . = lookup[[rI , rrl]] . . .

rI+ul :rI+lr . . . = extd [[rIul :r
I
lr, rul :rlr]] . . .

more([(rT , xT) . . .]; [(rI , xI) . . .];φ(rul :rlr) := l) [synth-pfx]
done(φ(rul :rlr) := {PREFIX(λ(xT1 , x

T
2 , x

T
3 , x

I , . . .).l,

rc0 :rc1, rd, rr0 :rr1, r
I+
ul :rI+lr , . . .)})

where [(rT , xT) . . .] is non-empty
rIul . . . = lookup[[rI , rul]] . . .
rIlr . . . = lookup[[rI , rrl]] . . .

rI+ul :rI+lr . . . = extd [[rIul :r
I
lr, rul :rlr]] . . .

(rT1 , x
T
1), (rT2 , x

T
2), (rT3 , x

T
3) = sort [[fill [[[(rT , xT) . . .]]]]]

rd = lookup[[rT2 , rul]]
rc0 = lookup[[rT1 , rul]]
rr0 = lookup[[rT3 , rul]]
rc1 = R(row [[rlr]])C(column[[rc0]])
rr1 = R(row [[rr0]])C(column[[rlr]])

Fig. 4. The relation for rewriting cell array formulas into λ-calc. The rules are
explained in detail in Sec. 3.2.

A B

1 =B1 1

2 =B2 =A1+B1

3 =B3 =A2+B2

A B

1 ={MAP(λ(x).x,B1 :B3)} 1

2 ={MAP(λ(x).x,B1 :B3)} ={PREFIX(λ(x,y,z).x+y,A2 :A3,A1,B1 :B1)}
3 ={MAP(λ(x).x,B1 :B3)} ={PREFIX(λ(x,y,z).x+y,A2 :A3,A1,B1 :B1)}

Fig. 5. A spreadsheet (top) whose rewritten variant (bottom) contains cyclic depen-
dencies. The cell arrays A1 :A3 and B1 :B3 are not copy equivalent. Rewriting both
results in an explicit cyclic dependency between the array formulas: φ(A1 :A3) refers to
B1 :B3 and φ(B2 :B3) refers to A2 :A3.

4 Implementation

We have implemented the rewriting semantics from Sec. 3 in Funcalc [17], a
prototype spreadsheet engine with efficient sheet-defined functions. The formula
language in Funcalc is higher-order. We use a modified variant of Funcalc, where
bulk operations on arrays are executed in parallel.

Instead of writing our own detection of cell arrays, we piggyback on Funcalc’s
algorithm for rebuilding the support graph [17, Sec. 4.2.9], which runs in linear
time in the number of cells in the cell array.

4.1 Parallelization Strategies

Since Funcalc runs on the .Net platform, we use the parallelization mechanisms
from the Task Parallel Library [14]. We can parallelize MAP by iterating over
either rows or columns in a parallel for-loop. Parallelizing the PREFIX function
is slightly more complicated.

Recall from Sec. 2 that, in order to compute the value at X[i, j] we must
already have computed X[i, j − 1], X[i − 1, j] and X[i − 1, j − 1]. Hence, there
exists a sequential dependency between the computations.

Fig. 6 illustrates the order in which PREFIX processes parts of the argument
array. Even though both q2 and q3 depend on q1, there is no sequential depen-
dency between q2 and q3. We can therefore compute the prefix of q2 and q3 in
parallel. When both are computed, we can proceed to compute q4. We use this
parallelization scheme recursively on each sub-array and stop recursing as soon
as either a minimum size is reached or if we have spawned as many parallel tasks
as there are processors.

4.2 Handling Over-Generalization

We can describe relative references in terms of their stride:

stride[[R[i1]C[i2]]] = max(|i1|, |i2|)

q1

q2

q3

q4

· · · ρ · · ·
δ

...

γ

...

Fig. 6. Wave front scheme of the PREFIX function. We process from the top left to the
bottom right of the 2D array, as indicated by the red arrows. The quadrants q2 and q3
depend on q1, while q4 depends on all of these, as indicated by the blue arrows. Values
γ, δ and ρ are initial values at the fringes, as described in Sec. 2

In real-world spreadsheets, it may happen that a transitive reference has a stride
larger than one, but the PREFIX function and its variants do not generalize to
such references. Hence, we cannot directly rewrite cell arrays with transitive cell
references of a stride larger than one.

Strides larger than one seem to be artifacts of the generality of the support
graph rebuilding algorithm (see Sec. 4). Our key observation here is that one
can turn transitive cell references into intransitive cell references by splitting
up the cell array into two sub-arrays. Consider the cell array R5C1:R15C5 whose
expression contains the transitive cell reference R[−5]C[0]. We can split it up into
the two sub-arrays R5C1:R10C5 and R11C1:R15C5, in both of which the reference
R[−5]C[0] is intransitive.

We call the rewriting algorithm recursively on each of the sub-arrays until
we either end up with a cell array that has transitive cell references with stride
at most one, or until there is only a single cell left, in which case we abort.

5 Performance Evaluation

To demonstrate the feasibility of our technique, we have conducted performance
benchmarks on synthetic and real-world spreadsheets. To avoid the overhead
of excess parallelism, we impose a minimum of 64 cells per cell array on the
rewriting algorithm, such that smaller cell arrays will not be rewritten. Times
for rewriting are not included in the measurements, since we consider this a
one-time operation. For comparison, we also benchmark performance for naively
launching a parallel task per cell.

Our benchmarks are the average of 100 full recalculations of the entire spread-
sheet. Full recalculation is easier to control during automatic benchmarks, but
does not reflect how rewriting cell arrays may affect the dependency structure
of spreadsheets negatively for efficient minimal recalculation.

Funcalc runs on the .Net platform. To trigger JIT compilation, we run three
warm-up iterations which we do not count prior to benchmarking. Our test
machines are an Intel i7-6500U with four cores at 2.5 GHz and 32GB of RAM,
64 bit Windows 7 and .Net Framework 4.7, as well as an Intel Xeon E5-2680

v3 with 48 cores at 2.5 GHz and 32GB of RAM, 64 bit Windows 10 and .Net
Framework 4.6.2. We only use 32 cores on the Xeon.

5.1 Spreadsheet Selection

We use two contrived, idealized spreadsheets to measure the isolated effect of
rewriting transitive and intransitive cell arrays. Both contain one cell array of
size 100× 100. The first one contains an intransitive cell array that applies the
sinus function on each input cell. The second one computes a cell array’s prefix
sum using transitive cell references and then calls the sinus function on the result
of each cell.

Furthermore, we have chosen three spreadsheets from Filby’s [7] book from
the EUSES corpus [8], as well as three Funcalc-related spreadsheets for synthetic
benchmarks. All of these sheets contain large cell arrays.

Finally, we use real-world spreadsheets from the EUSES spreadsheet cor-
pus [8]. We have selected twelve spreadsheets with relatively large and relatively
many cell arrays. Selection criteria were (1) applicability of our rewriting tech-
nique and (2) effort required to make the spreadsheets compatible with Funcalc.
Funcalc syntax differs from Excel in a number of ways, which requires modifi-
cations to the sheets. Additionally, we have implemented some Excel and VBA
functions as sheet-defined functions3.

5.2 Results

Table 1 shows speedup after rewriting idealized spreadsheets with only intransi-
tive or only transitive cell references. On the i7, we achieve good parallel speedup
for intransitive cell arrays; on the Xeon, parallelism doesn’t scale. The very large
speedup for transitive cell arrays is likely due to (1) using a more specialized ma-
chinery to refer to values in other cells; and (2) that Funcalc compiles the func-
tions we synthesize to byte-code, which alleviates the overhead of interpreting
the expression in each cell, as during Funcalc’s “standard” recalculation.

Table 1. Average speedup and standard deviation for 100 recalculations of idealized
spreadsheets that only consist of either an intransitive or transitive cell array of size
100× 100. Speedup is relative to sequential recalculation on the same machine; higher
is better.

Intel i7 Intel Xeon

Intransitive 2.77 ±0.317 3.14 ±0.059
Transitive 11.26 ±0.881 10.3 ±0.655

Fig. 7 shows the speedup after rewriting the more realistic spreadsheets. On
the i7, we achieve good speedups for synthetic spreadsheets. Running on the

3 The Funcalc compatible spreadsheets from the EUSES corpus are available at https:
//github.com/popular-parallel-programming/funcalc-euses/.

https://github.com/popular-parallel-programming/funcalc-euses/
https://github.com/popular-parallel-programming/funcalc-euses/

Xeon with eight times as many cores does not improve performance. On both
machines, the average speedup for real-world spreadsheets is lower than we would
expect, given the numbers from Table 1. We have two explanations for this.

First, the achievable speedup is bound by Amdahl’s law [9, Sec. 1.5]. If a
spreadsheet contains 4500 cells with formulas and a single intransitive cell array
of size 500, then the maximum speedup factor we can expect to see on 32 cores is
roughly 1.26. This holds for both synthetic and real-world spreadsheets. Unless
rewriteable cell arrays either dominate the spreadsheet, as in financial.xml

and PLANCK.xml, or contain very costly computations, as in testsdf.xml, the
overall performance will still be determined by the sequential computations.

Secondly, real-world spreadsheets have undergone continuous development
and are often cluttered with small experiments. Their design is often less stream-
lined towards a single large computation than that of synthetic spreadsheets.
Even if there are lots of disjoint computations, our technique is unable to ex-
ploit these unless they are structured in an array-like fashion.

f
i
n
a
n
c
e
2
.
x
m
l

f
i
n
a
n
c
e
.
x
m
l

t
e
s
t
s
d
f
.
x
m
l

D
N
A
.
x
m
l

E
U
S
E
.
x
m
l

P
L
A
N
C
K
.
x
m
l

0
2
r
i
s
e
.
x
m
l

2
0
0
2
Q
v
o
l
s
.
x
m
l

2
0
0
4
P
U
B
L
I
C
B
U
G
S
I
N
V
E
N
T
O
R
Y
.
x
m
l

A
g
g
r
e
g
a
t
e
2
0
G
o
v
e
r
n
a
n
c
e
.
x
m
l

F
i
n
a
n
c
i
a
l
-
P
r
o
j
e
c
t
i
o
n
s
.
x
m
l

f
u
n
d
i
n
g
.
x
m
l

h
i
g
h
2
0
0
3
b
e
l
g
.
x
m
l

i
s
t
e
-
c
s
-
2
0
0
3
-
m
o
d
e
l
i
n
g
-
s
i
m
.
x
m
l

M
R
P
E
x
c
e
l
.
x
m
l

n
o
t
e
s
5
C
M
I
S
B
2
0
0
S
P
0
4
H
2
K
E
Y
.
x
m
l

T
e
s
t
2
0
S
t
a
t
i
o
n
2
0
P
o
w
e
r
.
x
m
l

W
a
s
t
e
C
a
l
e
n
d
a
r
C
a
l
c
u
l
a
t
e
.
x
m
l

0

1

2

3

S
p

ee
d
u
p

Rewriting (i7) Rewriting (Xeon) Task per cell (Xeon)

Fig. 7. Average benchmark results over 100 runs for synthetic (left part) and real-
world (right part on gray background) spreadsheets. Values are speedup factors over
sequential performance on the same machine; higher is better. Error bars indicate the
standard deviation.

6 Alternative Usages and Related Work

Neither parallel recalculation of spreadsheets nor high-level structure analysis
are new ideas. To our knowledge, however, no prior work has combined both in
a practical application of functional programming.

Wack [19] focused on a dataflow approach to whole-spreadsheet paralleliza-
tion, in contrast to our idea that harnesses local array parallelism. Yoder and

Cohn [20, 21] investigate spreadsheets from a theoretical point of view, also with
data flow parallelism in mind. They observe that high-level array programming
intuitively maps to spreadsheets [21]; this is the core of our technique.

Much research on high-level spreadsheet structures focuses on user under-
standing; either by highlighting areas with equal or similar formulas [15], whose
definition is highly related to cell arrays, or by drawing dataflow diagrams [11] to
illustrate relations between sheets and cell arrays. Our rewriting technique could
be adapted to give such a high-level overview over operations on cell arrays by
displaying the synthesized function.

Rewriting of cell arrays is related to template synthesis from spreadsheets.
Isakowitz et al. [13] describe a method to synthesize either a model from a
spreadsheet or instantiate a spreadsheet from a model. The notable difference to
our work is that they generate a whole-sheet model. Furthermore, they use an
external language to describe the model, whereas we perform source-to-source
rewriting. Generating local high-level abstractions, as opposed to whole-sheet
models, could be useful for expert spreadsheet developers when devising algo-
rithms, similar to spreadsheet generation.

Abraham and Erwig [1] infer templates by analyzing references across cell
arrays to prevent errors during modification, also using copy equivalence. Our
technique is only concerned with single cell arrays.

Others [3, 5, 12] focus on detecting clones of cell arrays or tables on the same
spreadsheet, which is again a whole-sheet analysis.

7 Conclusion

In this paper, we presented a rewriting semantics to rewrite cell arrays that
consist of copy equivalent cells to higher-order functional expressions on arrays.
We can easily exploit the implicit parallelism of these rewritten cell arrays and
therefore improve recalculation speed of spreadsheets where cell arrays dominate
on typical consumer hardware.

There are limitations to our approach. Our rewriting semantics currently
does not support cell arrays that reference cell ranges. We believe that this will
be easy to add. We have furthermore not yet presented a formal proof that our
rewriting semantics preserves the semantics of the cell array’s expression.

Naively rewriting all detectable cell arrays can introduce cyclic references and
hence change the semantics of the original spreadsheet. Detecting these before
rewriting comes at the cost of an additional walk of the dependency graph. More-
over, the parallel speedup we can achieve is limited by the ratio of parallelizable
cell arrays to inherently sequential dependencies in the spreadsheet.

Our experimental results show that only spreadsheets consisting of large
cell arrays achieve good speedups on consumer hardware. This suggests that
our rewriting approach should not be automatic but instead a manual tool for
expert spreadsheet developers, and also that it makes sense to investigate how
our technique can be combined with other parallelization techniques, for instance
data flow parallelism.

Bibliography

[1] R. Abraham and M. Erwig. Inferring Templates from Spreadsheets. In ICSE ’06.
[2] R. J. Casimir. Real Programmers Don’t Use Spreadsheets. SIGPLAN Not., June

1992.
[3] S. C. Cheung, W. Chen, Y. Liu, and C. Xu. CUSTODES: Automatic Spreadsheet

Cell Clustering and Smell Detection Using Strong and Weak Features. In ICSE
’16.

[4] W .Dou, S. C. Cheung, and J. Wei. Is Spreadsheet Ambiguity Harmful? Detecting
and Repairing Spreadsheet Smells Due to Ambiguous Computation. In ICSE ’14.

[5] W .Dou, S. C. Cheung, C. Gao, C. Xu, L. Xu, and J. Wei. Detecting Table Clones
and Smells in Spreadsheets. In FSE ’16.

[6] W. Dou, C. Xu, S. C. Cheung, and J. Wei. CACheck: Detecting and Repairing
Cell Arrays in Spreadsheets. IEEE Trans. on Software Engineering, 2016.

[7] G. Filby, editor. Spreadsheets in Science and Engineering. Springer-Verlag New
York, Inc., New York, NY, USA, 1998. ISBN 3-540-61253-X.

[8] M. Fisher and G. Rothermel. The EUSES Spreadsheet Corpus: A Shared Resource
for Supporting Experimentation with Spreadsheet Dependability Mechanisms. In
WEUSE I.

[9] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Else-
vier/Morgan Kaufmann, 2008. ISBN 9780123705914.

[10] F. Hermans and E. Murphy-Hill. Enron’s Spreadsheets and Related Emails: A
Dataset and Analysis. In ICSE ’15.

[11] F. Hermans, M. Pinzger, and A. van Deursen. Supporting Professional Spreadsheet
Users by Generating Leveled Dataflow Diagrams. In ICSE ’11.

[12] F. Hermans, B. Sedee, M. Pinzger, and A. van Deursen. Data Clone Detection
and Visualization in Spreadsheets. In ICSE ’13.

[13] T. Isakowitz, S. Schocken, and H . C. Lucas. Toward a Logical/Physical Theory
of Spreadsheet Modeling. ACM Trans. Inf. Syst., January 1995.

[14] D. Leijen, W. Schulte, and S. Burckhardt. The Design of a Task Parallel Library.
In OOPSLA ’09.

[15] R. Mittermeir and M. Clermont. Finding High-Level Structures in Spreadsheet
Programs. In WCRE ’02.

[16] J. Sajaniemi. Modeling Spreadsheet Audit: A Rigorous Approach to Automatic
Visualization. Journal of Visual Languages & Computing, February 2000.

[17] P. Sestoft. Spreadsheet Implementation Technology: Basics and Extensions. The
MIT Press, September 2014. ISBN 0262526646.

[18] T. F. Smith and M. S. Waterman. Identification of common molecular subse-
quences. Journal of Molecular Biology, March 1981.

[19] A. P. Wack. Partitioning Dependency Graphs for Concurrent Execution: A Parallel
Spreadsheet on a Realistically Modeled Message Passing Environment. PhD thesis,
Newark, DE, USA, 1996.

[20] A. Yoder and D. L. Cohn. Observations on Spreadsheet Languages, Intension and
Dataflow. Technical Report.

[21] A. G. Yoder and D. L. Cohn. Domain-Specific and General-Purpose Aspects of
Spreadsheet Language. In DSL ’97.

	Rewriting High-Level Spreadsheet Structures into Higher-Order Functional Programs

