
How Are Spreadsheet Templates Used in Practice:
A Case Study on Enron

Liang Xu, Wensheng Dou*, Jiaxin Zhu, Chushu Gao, Jun Wei, Tao Huang
University of Chinese Academy of Sciences, China

State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China
{xuliang12, wsdou, zhujiaxin, gaochushu, wj, tao}@otcaix.iscas.ac.cn

ABSTRACT
To reduce the effort of creating similar spreadsheets, end users
may create expected spreadsheets from some predesigned
templates, which contain necessary table layouts (e.g., headers
and styles) and formulas, other than from scratch. When there are
no explicitly predesigned spreadsheet templates, end users often
take an existing spreadsheet as the instance template to create a
new spreadsheet. However, improper template design and usage
can introduce various issues. For example, a formula error in the
template can be easily propagated to all its instances without users’
noticing. Since template design and usage are rarely documented
in literature and practice, practitioners and researchers lack
understanding of them to achieve effective improvement. In this
paper, we conduct the first empirical study on the design and the
usage of spreadsheet templates based on 47 predesigned templates
(490 instances in total), and 21 instance template groups (168
template and instance pairs in total), extracted from the Enron
corpus. Our study reveals a number of spreadsheet template
design and usage issues in practice, and also sheds lights on
several interesting research directions.

CCS CONCEPTS
• Applied computing → Spreadsheets • Software and its
engineering → Software reverse engineering

KEYWORDS
Spreadsheet, template, empirical study

ACM Reference format:

Liang Xu, Wensheng Dou, Jiaxin Zhu, Chushu Gao, Jun Wei and Tao
Huang. 2018. How Are Spreadsheet Templates Used in Practice: A Case
Study on Enron. In Proceedings of the 26th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engi-neering (ESEC/FSE’18), November 4–9, 2018, Lake Buena Vista, FL, USA.
ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3236024.3264834

1 INTRODUCTION
Spreadsheets, as one of the most successful end-user
programming platforms, are widely used to perform various tasks,
such as financial reporting, data storage and data analyses [20].

End users usually develop a group of similar spreadsheets to
perform similar business tasks. For example, the monthly financial
reports in a company usually share the same table structures and
computations. To speed up the preparation of such similar
spreadsheets, end users may prepare semi-finished spreadsheets
with some predefined formulas and table layouts, and then create
new spreadsheets based on these semi-finished spreadsheets. In
this paper, we use predesigned templates to denote this kind of
semi-finished spreadsheets, and instances to denote the
spreadsheets created based on the predesigned templates. Fig. 1
shows a typical predesigned spreadsheet template and one of its
instances, which is extracted from the Enron corpus [13]. Note
that, predesigned templates usually do not contain actual data. For
example, in the predesigned template of Fig. 1a, cells C46:Z51 are
filled with the default value (e.g., 0). In some cases, end users may
not predesign spreadsheet templates, and they choose an existing
spreadsheet as the template, delete the original data, and create
new spreadsheets based on the spreadsheet. In this paper, we use
instance templates to denote the spreadsheet instances which are
used to create new spreadsheets.

There are a number of benefits of using spreadsheet templates.
First, the predefined table layouts and formulas can greatly reduce
users’ effort in creating new spreadsheets. Second, all the
instances created through the same template usually share the
unified layout, which makes it easy for end users to process their
spreadsheets with other external programs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
ESEC/FSE '18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5573-5/18/11…$15.00
https://doi.org/10.1145/3236024.3264834

*Corresponding author

(a) Blank (Template)

(b) 10-3 (Instance)

Figure 1. A real-world template and one of its instances.

ESEC/FSE’18, November 4–9, 2018, Lake Buena Vista, FL, USA L. Xu, W. Dou, J. Zhu, C. Gao, J. Wei, T. Huang

However, using spreadsheet templates also results in many
issues in practice. 1) The impact of design flaws in the predesigned
and instance templates could be large and wide. For example,
users may need to make some common changes when creating
new instances based on an incomplete predesigned template. 2)
Worse, if a template contains errors, then these errors can be
propagated to its instances without users’ noticing. For example,
in the template of Fig. 1a, the formula in cell AA52 is
“=SUM(AA46:AA50)”, but it should be “=SUM(AA46:AA51)”. This
error was propagated to the instance shown in Fig. 1b. 3) Incorrect
usage of templates may introduce errors. In the instance of Fig. 1b,
the user deleted the formulas in cells AA50 and AA51
unintentionally, and this makes the spreadsheet error-prone.

Existing research on spreadsheets mainly focuses on bug
detection [2][6][8][10][14][15], structrue analysis [7][9][16],
debugging [3][5], testing [1][18], and evolution analysis [11][17],
while the problems of how spreadsheet errors are introduced, in
particular when reusing spreadsheet templates, are unexplored.
To the best of our knowledge, there is no study on spreadsheet
template usage.

In this paper, we present the first empirical study on the usage
of spreadsheet templates in practice to obtain insights for
spreadsheet usage and research. Our study is conducted on the
Enron corpus [13], an industrial-scale spreadsheet corpus, which
was collected from the email archive of the Enron Corporation
[22]. We collect 47 predesigned templates (490 instances in total)
from the Enron corpus by a keyword-based approach. We further
collect 21 instance template groups (168 template and instance
pairs in total) from the Enron corpus by a random sampling. Then,
we analyze the changes made during the creation of instances,
find out what kinds of errors occur in templates and their
corresponding instances, and understand how they were
introduced. This seminal study provides various evidences and
insights, and uncovers several opportunities for users and
researchers to achieve more effective spreadsheet practice from
the perspective of spreadsheet templates.

2 RESEARCH QUESTIONS
The quality of predesigned templates has a wide impact on its
instances. If an error occurs in a predesigned template, it may be
propagated to all its instances without users’ noticing. To address
the quality concerns, we raise the first research question: RQ1:
Are the predesigned templates well-designed?

Although many techniques have been proposed to detect
errors in spreadsheets, why and how spreadsheet errors are
introduced are still unexplored. Such knowledge can be leveraged
to invent more effective techniques of error detection, prevention
and fixing. Therefore, we raise the second research question: RQ2:
What and how errors are introduced during predesigned
template usage?

If the predesigned templates are not available, users tend to
reuse the instances instead of templates. To find out the
prevalence of such practice and reveal its problems, we raise the
third research question: RQ3: What is difference between the
predesigned template reuse and instance template reuse?

3 METHODOLOGY
To study the usage of spreadsheet templates in practice, we focus
on the templates contained in the Enron corpus [13], whose
spreadsheets are extracted from industry and can reflect how
users use the templates in practice.

3.1 Template and Instance Identification
Spreadsheet templates have two levels of granularity:
⚫ Worksheet-level template: A worksheet in a spreadsheet is

designed or used as a template, and its instances are
worksheets.

⚫ Spreadsheet-level template: A spreadsheet is designed or
used as the template. A spreadsheet-level template may
contain more than one worksheet.

The relationship among templates and their instances is rarely
explicitly documented. Thus, a spreadsheet-level template and its
instances are usually stored as independent spreadsheets by
spreadsheet systems, e.g. Microsoft Excel. Although VEnron [11]
clusters multiple versions of the same spreadsheet into an
evolution group, it is still challenging to distinguish the instances
of a spreadsheet-level template from the revised versions of
another instance. Different from the spreadsheet-level templates,
a worksheet-level template and its instances are usually placed in
the same spreadsheet, and do not suffer from this issue. To ensure
the accuracy of template and instance identification, we only
focus on the worksheet-level templates in this paper.

Identifying predesigned templates and their instances. We
use keywords (i.e., “template” and “blank”) to search the possible
predesigned worksheet-level templates in the Enron corpus. The
worksheets in the search results are identified as predesigned
templates if their most data cells contain default values, e.g., 0.

We identify corresponding instances by manually checking
whether existing worksheets have the similar layout with the
template in the spreadsheets. If a worksheet shares the similar
layout with a predesigned template, it is identified as an instance.

Identifying instance templates and their instances. To
inspect instance templates in practice, we randomly sample 100
spreadsheets that contain at least three non-empty worksheets
from the Enron corpus. Then, we carefully inspect these 100
spreadsheets and find that 48 out of them contain at least two
similar worksheets. Among them, only 3 spreadsheets contain
predesigned worksheet templates. This means that it is common
for users to reuse instance templates instead of predesigned
templates (45% vs. 3%).

Then, we cluster similar worksheets in the same spreadsheets
into groups and try to recover the creation order of these similar
worksheets in each group according to the chronological order
(e.g., “Jan 2001” and “Feb 2001”) or sequence information (e.g.,
“Sheet1” and “Sheet1(2)”) in them. Finally, we successfully recover
the creation order in 30 worksheet groups. For each worksheet
group, we assume that for each two adjacent worksheets, the first
one can serve as the instance template to create the second one.
This assumption is reasonable in practice: users usually reuse the
latest worksheet to create a new one, other than reusing earlier
ones.

How Are Spreadsheet Templates Used in Practice … ESEC/FSE’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Note that some of the identified templates and instances are
duplicated. To avoid their impact on our result, we design a
feature-based duplication removal algorithm which compares
some features (e.g., cell type and font family) of two worksheets
cell by cell. Finally, we in total collect 47 predesigned templates
and their 490 instances, and 21 instance template groups,
including 168 template and instance pairs.

3.2 Analysis of Template Usage
To answer the above three research questions, we manually align
an instance and its corresponding template by applying change
operations (e.g., inserting or deleting rows or columns), then
automatically identify the content changes cell by cell, including
the changes on formulas, headers, font family and size, and styles
of table borders. We implement a plugin for Microsoft Excel to
record all changes for further analyses. For example, our manual
inspection goes into the changes on formulas and table layouts to
detect errors during template usage.

3.3 Threats to Validity
The representativeness of our studied spreadsheets is the main
threat to external validity. Different from other existing
spreadsheet corpora EUSES [12] and Fuse [4], the Enron corpus
was extracted from industry rather than the Internet, whose
spreadsheets can reflect how users use the templates in practice.
The main threats to internal validity come from the accuracy of
template and instance identification. To identify the instances for
each predesigned template, we simply assume that the worksheets
with the same layout in the same spreadsheets are created by
reusing the predesigned templates. To identify the instances for
each instance template, we assume that users use the latest
instance as the template to create new instances. These
assumptions are not always true. But it is quite common in
practice according to our experience.

4 EMPIRICAL STUDY RESULTS

4.1 Quality of Predesigned Templates
Intuitively, a well-designed predesigned template should meet the
following four requirements.

⚫ Predefine a complete table layout. The table layout
means the spatial relationship between the header cells
and data cells, including the headers and some settings
related to the appearance of the tables, such as the border
styles and background colors of cells.

⚫ Predefine all necessary formulas. Formulas are the
business logics implemented in the spreadsheets, and
determine what the inputs are and how to process data.

⚫ Eliminate common operations made in creating
different instances. Common operations are operations
that are performed in the creation of most instances,
which hinder users’ effort minimization. Thus, they can
reflect the completeness of the predesigned templates.

⚫ Contain no errors. Like bugs can be propagated through
code reusing, e.g., code cloning [19], errors in a

predesigned template can be propagated to its instances
without noticing and may cause serious damages to the
quality of instances.

Based on the above four requirements for well-designed
templates, we evaluate the design of predesigned templates by
detecting common changes, missing formulas and formula errors.
Specifically, common changes reflect the completeness of the
predesigned templates. For example, if all or most instances of a
template include the same header, the template has an incomplete
layout and can be refined by introducing the header. In this paper,
the changes and formulas that occur in more than half of a
template’s instances are considered as common changes. We
detect missing formulas in a predeisigned template using the
following rule: the cells in instances contain formulas, while the
corresponding cells in the predesigned template do not. It is
challenging to discover and confirm all formula errors in the
predesigned templates. Thus, we only focus on the range errors
[21], of which the identification is feasible and easily confirmed.

As shown in Table 1, we find that common changes exist in
the usage of 9 (19%) predesigned templates, 14 (30%) predesigned
templates have missing formulas, and 3 (6%) predesigned
templates contain range errors.

Answer to RQ1: 40% of predesigned templates have design
issues, which may counteract the expected benefits, and substantial
improvements are required.

4.2 Errors in Predesigned Template Usage
We observe four kinds of errors introduced in the instances when
using predesigned templates, including missing formulas, range
errors, unnecessary formulas and inconsistent formulas. Table 2
shows the numbers of detected errors caused by different reasons.
We in total detected 19,965 errors, introduced in the usage of 79%
(37 out of 47) predesigned templates.

We detected 18,741 missing formulas in 317 instances of 34
(72%) templates. The main reason is that users overwrote a
formula with a constant value. While, 560 missing formulas are
caused by the missing formulas in predesigned templates. That
indicates the errors in the predesigned template can be easily
propagated to its instances without users’ noticing.

Range errors [21]occur when the ranges of cells referenced by
formulas include unrelated cells or miss some related cells. We
detected 605 range errors in 63 instances of 16 (34%) templates.
The main cause is that users forgot to append the new inserted
cells to the range. Take Microsoft Excel as an example, if a new
cell is inserted somewhere in the middle of a range, the range will
be automatically expanded, such that the new value and all old
values are still referenced by formulas. However, users may
append the range by inserting cells at the boundary, and the

Table 1. Issues in Predesigned Templates

Issues Predesigned Template
Common changes 9 (19%)
Missing formulas 14 (30%)
Formula errors 3(6%)
Total 19(40%)

ESEC/FSE’18, November 4–9, 2018, Lake Buena Vista, FL, USA L. Xu, W. Dou, J. Zhu, C. Gao, J. Wei, T. Huang

values in the new inserted cells will not be included in the range
and referenced by formulas automatically.

Unnecessary formulas denote the formulas added in the
instances with no valid inputs. We detected 168 unnecessary
formulas in 64 instances of 12 (26%) templates. The main cause is
that users changed the types of all the cells referenced by the
formulas. Such operations may make the formula receive no valid
input, (e.g., date, string or sequence numbers) and become
unnecessary.

Inconsistent formulas denote the formulas used in the
instances are different from what they are in the corresponding
templates. We in total detected 451 inconsistent formula errors in
50 instances of 11 (23%) templates. Most of them are caused by
wrong error detection and repair suggestions provided by
spreadsheet systems, e.g., Excel. When creating new instances,
users accepted those repair suggestions and modified formulas by
provided operations in the smart tag.

Answer to RQ2: The usage of predesigned templates faces severe
issues. In the usage of 79% predesigned templates, at least one error
is introduced, and missing formulas are the most common errors.

4.3 Errors in Instance Template Usage
Similar to predesigned template study, we first inspect the quality
of instance templates by checking the errors contained in them.
In total, we detected 391 errors in 30% (51 out of 168) instance
templates, including 357 missing formula errors and 34
unnecessary formula errors.

We also study the issues in using instance templates like the
predesigned template study. We in total detect 644 formula errors
in the instances of 32% (54 out of 168) instance templates,
including 365 missing formula errors, 277 inconsistent formula
errors and 2 range errors. Missing formulas are also the most
common errors in instance reuses and 229 missing formulas are
caused by missing formulas that host in instance templates.

Unlike the usage of predesigned templates, when creating new
spreadsheets based on instance templates, users need to clean the
data in the instance templates since they are not useful for the
new instances. While, there is a higher risk of introducing errors
during data cleaning. We investigate how many data in the
original instance templates should be cleaned. We find that in 52%
(87 out of 168) of cases, the proportion of data cells that were
cleaned or overwritten is over 50%. We find 101 missing formulas
were caused by data cleaning, which is a new but very popular
cause in instance template usage. Data cleaning becomes a new
challenge in the usage of instance templates.

Answer to RQ3: The usage of instance templates suffers from
the same types of errors.

5 RESEARCH OPPORTUNITIES
Our preliminary study highlights several research opportunities：

Template extraction. Our study shows that 40% of
predesigned templates have design issues. This finding implies
that it is difficult to build a better abstraction which can cover
common requirements from potential users. An approach that can
extract or refine templates from a set of instances would be very
helpful for reducing efforts and preventing errors.

Template-based error detection. Errors in spreadsheet
templates and their instances are common. For example, we find
that missing formulas in instances usually exist in their
corresponding templates. A template-based approach, which
detects and fixes missing formulas by comparing an instance with
its template, is promising.

Propagated errors tracing. Errors in spreadsheet templates
may be propagated to their instances without users’ noticing.
Table 2 shows that there are 598 propagated errors in templates.
The relationships between templates and instances are usually
missing due to lack of management systems for spreadsheets.
Once an error is detected in a template, how to trace the
propagated errors in its instances is important and challenging.

6 CONCLUSIONS
Spreadsheet templates are proposed to help users create
spreadsheets efficiently. Improper design and usage of templates
can introduce various issues. Based on 47 predesigned templates
(490 instances) and 21 instance template groups (168 template and
instance pairs) collected from the Enron corpus, we perform the
first empirical study on the design and usage of these templates
used in practice. Our findings highlight the issues during
spreadsheet template usage and several interesting research
directions. We have made our study results available online
(http://www.tcse.cn/~wsdou/project/TmplEnron) for further studies.

It is generally inappropriate to generalize our findings from a
single case, but our findings provide important insights for further
studies. Our study framework proposed in this paper can also be
reused on more datasets to obtain more generalizable results. We
plan to perform further studies on other datasets in the future.

ACKNOWLEDGMENTS
This work was partially supported by National Key Research and
Development Program of China (2017YFA0700603), National
Natural Science Foundation of China (61702490), Frontier Science
Project of Chinese Academy of Sciences (QYZDJ-SSW-JSC036),
and Youth Innovation Promotion Association at CAS.

Table 2. Distribution of the Four Types of Errors Caused by Different Reasons

Missing Formula Range Error Unnecessary Formula Inconsistent Formula
Reason description Detected Reason description Detected Reason description Detected Reason description Detected
Overwrite 17,552 Range change 475 Cell type change 83 Wrong repair 217
Error in template 560 Cell type change 86 Wrong location 53 Wrong formula 198
Cell insertion 291 Error in template 38 Formula deletion 30 Reference 36
Formula deletion 290 Row insertion 6 Location change 2
Row (Cell) insertion 45(3)

REFERENCES
[1] R. Abraham, and M. Erwig. 2006. AutoTest: A Tool for Automatic Test Case

Generation in Spreadsheets. In Proceedings of IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), 43–50.

[2] Robin Abraham, and Martin Erwig. 2007. UCheck: A Spreadsheet Type Checker
for End Users. Journal of Visual Languages & Computing 18: 71–95.

[3] Robin Abraham, and Martin Erwig. 2007. GoalDebug: A Spreadsheet Debugger
for End Users. In Proceedings of International Conference on Software Engineering
(ICSE), 251–260.

[4] Titus Barik, Kevin Lubick, Justin Smith, John Slankas, and Emerson Murphy-
Hill. 2015. FUSE: A Reproducible, Extendable, Internet-Scale Corpus of
Spreadsheets. In Proceedings of the 12th Working Conference on Mining Software
Repositories (MSR), 486–489.

[5] Daniel W. Barowy, Dimitar Gochev, and Emery D. Berger. 2014. CheckCell:
Data Debugging for Spreadsheets. In Proceedings of ACM International
Conference on Object Oriented Programming Systems Languages & Applications
(OOPSLA), 507–523.

[6] Shing-Chi Cheung, Wanjun Chen, Yepang Liu, and Chang Xu. 2016. CUSTODES:
Automatic Spreadsheet Cell Clustering and Smell Detection using Strong and
Weak Features. In Proceedings of International Conference on Software
Engineering (ICSE), 464–475.

[7] Wensheng Dou, Shing-Chi Cheung, Chushu Gao, Chang Xu, Liang Xu, and Jun
Wei. 2016. Detecting Table Clones and Smells in Spreadsheets. In Proceedings of
ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE), 787–798.

[8] Wensheng Dou, Shing-Chi Cheung, and Jun Wei. 2014. Is Spreadsheet
Ambiguity Harmful? Detecting and Repairing Spreadsheet Smells due to
Ambiguous Computation. In Proceedings of International Conference on Software
Engineering (ICSE), 848–858.

[9] Wensheng Dou, Shi Han, Liang Xu, Dongmei Zhang, and Jun Wei. 2018.
Expandable Group Identification in Spreadsheets. In Proceedings of the
ACM/IEEE International Conference on Automated Software Engineering (ASE),
498–508.

[10] Wensheng Dou, Chang Xu, S.C. Cheung, and Jun Wei. 2017. CACheck:
Detecting and Repairing Cell Arrays in Spreadsheets. Transactions on Software
Engineering (TSE) 43: 226–251.

[11] Wensheng Dou, Liang Xu, Shing-Chi Cheung, Chushu Gao, Jun Wei, and Tao
Huang. 2016. VEnron: A Versioned Spreadsheet Corpus and Related Evolution
Analysis. In Proceedings of International Conference on Software Engineering
Companion (ICSE), 162–171.

[12] Marc Fisher, and Gregg Rothermel. 2005. The EUSES Spreadsheet Corpus: A
Shared Resource for Supporting Experimentation with Spreadsheet
Dependability Mechanisms. ACM SIGSOFT Software Engineering Notes: 1–5.

[13] Felienne Hermans, and Emerson Murphy-Hill. 2015. Enron’s Spreadsheets and
Related Emails: A Dataset and Analysis. In Proceedings of the 37th IEEE
International Conference on Software Engineering (ICSE), 7–16.

[14] Felienne Hermans, Martin Pinzger, and Arie van Deursen. 2012. Detecting and
Visualizing Inter-Worksheet Smells in Spreadsheets. In Proceedings of
International Conference on Software Engineering (ICSE), 441–451.

[15] Felienne Hermans, Martin Pinzger, and Arie van Deursen. 2015. Detecting and
Refactoring Code Smells in Spreadsheet Formulas. Empirical Software
Engineering 20: 549–575.

[16] Felienne Hermans, Ben Sedee, Martin Pinzger, and Arie van Deursen. 2013. Data
Clone Detection and Visualization in Spreadsheets. In Proceedings of
International Conference on Software Engineering (ICSE), 292–301.

[17] Bas Jansen, and Felienne Hermans. 2015. Code Smells in Spreadsheet Formulas
Revisited on an Industrial Dataset. In Proceedings of IEEE International
Conference on Software Maintenance and Evolution (ICSME), 372–380.

[18] G. Rothermel, L. Li, C. DuPuis, and M. Burnett. 1998. What You See Is What You
Test: A Methodology for Testing Form-Based Visual Programs. In Proceedings
of International Conference on Software Engineering (ICSE), 198–207.

[19] Chanchal K Roy, and Kevin A Schneider. 2017. A Study on Bug Propagation
through Code Cloning. In Proceedings of the 33rd IEEE Internatioal Conference on
Software Maintenance and Evolution (ICSME), 229–237.

[20] Christopher Scaffidi, Mary Shaw, and Brad Myers. 2005. Estimating the
Numbers of End Users and End User Programmers. In 2005 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC’05), 207–214.

[21] Thomas Schmitz, and Dietmar Jannach. 2016. Finding Errors in the Enron
Spreadsheet Corpus. In Proceeding of IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), 157–161.

[22] Enron Corporation. Retrieved from https://en.wikipedia.org/wiki/Enron

