
 

Characterizing and Taming Non-deterministic Bugs 

in JavaScript Applications 
 

Jie Wang 

State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences, China 

University of Chinese Academy of Sciences, China 

wangjie12@otcaix.iscas.ac.cn 

    

Abstract—JavaScript has become one of the most popular 

programming languages for both client-side and server-side 

applications. In JavaScript applications, events may be generated, 

triggered and consumed non-deterministically. Thus, JavaScript 

applications may suffer from non-deterministic bugs, when events 

are triggered and consumed in an unexpected order. In this 

proposal, we aim to characterize and combat non-deterministic 

bugs in JavaScript applications. Specifically, we first perform a 

comprehensive study about real-world non-deterministic bugs in 

server-side JavaScript applications. In order to facilitate bug 

diagnosis, we further propose approaches to isolate the necessary 

events that are responsible for the occurrence of a failure. We also 

plan to design new techniques in detecting non-deterministic bugs 

in JavaScript applications. 

Keywords—JavaScript, Node.js, non-deterministic bug, 

empirical study, record and replay, bug detection 

I. INTRODUCTION 

JavaScript has become the most popular language for client-
side web applications. According to recent surveys from Stack 
Overflow [1] and Node.js foundation [2], JavaScript is also 
surpassing the popularity of other programming languages (e.g., 
PHP and Java) in server-side applications. For example, Node.js 
has become a popular server-side JavaScript framework. 

In both client- and server- sides, JavaScript adopts event-
driven architecture. In this architecture, the events may be 
generated, triggered and consumed non-deterministically, 
causing bugs that happens under a special event order. We call 
such bugs as non-deterministic bugs in this proposal. Non-
deterministic bugs can result in unreliable and unpredictable 
application behaviors, such as crashes in server-side 
applications and wrong outputs in client-side applications. 

Non-deterministic bugs in JavaScript applications have not 
been well addressed by existing work despite their importance. 
First, as far as we know, no comprehensive study has been 
performed about non-deterministic bugs for JavaScript 
applications, so we cannot well understand non-deterministic 
bugs’ characteristics. Second, there is still a lack of effective 
tools for taming non-deterministic bugs for JavaScript 
applications. For example, in debugging, record-replay 
techniques, e.g., Mugshot [3], can be used to record non-
determinism in JavaScript applications, and facilitate failure 
diagnosis. However, record-replay techniques usually record a 
long event trace, and it is time-consuming and exhausting to 

debug with such a long event trace. For non-deterministic bug 
detection, there is no effective tool that can detect atomicity 
violation among events. Although the fuzz testing technique [4] 
is proposed to increase the possibility to expose non-
deterministic bugs in Node.js, there is still a lot of room for 
better approaches to combat non-deterministic bugs. 

In this proposal, we target at characterizing and combating 
non-deterministic bugs in event-driven JavaScript applications. 
Specifically, we address the following research problems. First, 
for better understanding non-deterministic bugs, we performed 
the first comprehensive study on real world non-deterministic 
bugs in server-side Node.js applications [5]. We have carefully 
studied 57 real-world bug cases from open-source Node.js 
applications, and analyzed their bug characteristics, e.g., bug 
patterns, fixing strategies, etc. Second, to facilitate failure 
diagnosis, we eliminate the side effects of non-determinism by 
recording the event trace that results in a failure, and then reduce 
the original event trace to a smaller event trace that is responsible 
for the occurrence of a failure. In this respect, we present a 
dynamic slicing based approach [6] and a context-based 
approach [7], respectively. Third, we are developing a tool for 
detecting atomicity violation bugs which are very common in 
Node.js applications. We have proposed several novel patterns 
to identify atomicity violation bugs. 

II. RELATED WORK 

Bug studies. Existing bug studies in JavaScript mainly focus 
on client-side JavaScript applications [8][9]. However, these 
studies do not cover non-deterministic bugs in JavaScript 
applications. The study [8] observes that non-deterministic 
errors are common in web applications, but it does not give an 
analysis on non-deterministic bugs. Although Node.fz [4] 
provides an initial study on a small set of non-deterministic bugs 
(only 12 bugs) in Node.js, we do not know whether the 
characteristics from these 12 bugs can be generalized to more 
non-deterministic bugs. There are some studies on concurrency 
bugs in multi-threaded [10] and distributed systems [11]. 
However, non-deterministic bugs in server-side JavaScript 
applications differ from those in traditional systems as they 
originate from different programming paradigms and execution 
environments. 

Concurrency bug analysis. In recent years, much research 
effort has been devoted to non-deterministic bugs in event-
driven applications, e.g., Android [12][13], client-side [14][15] 



and server-side web applications [16]. Our study shows that 
non-deterministic bugs in Node.js have different characteristics 
in bug patterns, manifestations and fix strategies. Thus, those 
approaches may be ineffective for Node.js. 

Event trace reduction. Dynamic slicing [17] is effective in 
simplifying traces which computes the dynamic slice by 
building reachability graph. However, dynamic slicing faces 
DOM-specific challenges in JavaScript applications. Delta 
debugging [18] is commonly used for trace minimization and 
fault isolation. HDD [19] takes advantage of the hierarchical 
structure of the input, such as XML, to speed up delta debugging. 
However, HDD does not help our case since the input of the 
event trace reduction (i.e., event trace) is not structured. 
Hamouddi et al. [20] adapts delta debugging [18] to reduce event 
traces for web applications. However, it needs to try many 
infeasible candidate traces, and is inefficient. 

III. ACCOMPLISHED WORK 

In this section, we introduce our approaches and results for 
our accomplished work. First, we perform a comprehensive 
study on 57 real world bugs in server side JavaScript 
applications (i.e., Node.js) for better understanding of non-
deterministic bugs caused by event ordering (Section III.A). 
Second, to help facilitate diagnosing non-deterministic bugs, we 
eliminate the side effects of non-determinism by recording the 
event trace that results in a failure, and output a shortened event 
trace that can still reproduce the original failure. To this end, we 
propose a dynamic slicing based approach (Section III.B). Third, 
we find that some events are still irrelevant although dynamic 
slicing approach cannot remove them. Thus, we further propose 
a context based approach to remove failure-irrelevant events 
(Section III.C). Although the proposed dynamic slicing based 
and context based approaches are now implemented for client-
side JavaScript applications, they are also applicable for server-
side Node.js applications. 

A. NodeCB: A Comprehensive Study on Real World Non-

deterministic Bugs in Node.js 

Node.js, as a server-side JavaScript platform, is relatively 
new, and little is known about non-deterministic bugs in real 
world Node.js applications. Therefore, we aim to conduct a 
comprehensive study on such non-deterministic bugs in Node.js 
applications. Our study tries to answer the following research 
questions:  

 RQ1 (Bug patterns and root causes): What are common 
bug patterns of non-determinisitic bugs in Node.js? What 
are their root causes? 

 RQ2 (Bug impacts): Do non-determinisitic bugs have 
severe failure symptoms? What impacts do they have in 
Node.js applications? 

 RQ3 (Bug manifestation): How do non-determinisitic 
bugs manifest themselves in Node.js? How are non-
determinisitic bugs triggered, e.g., the timing condition, 
input conditions? 

 RQ4 (Bug fix strategies): How do developers fix non-
determinisitic bugs in Node.js applications? Are there 
any common fix strategies? 

In order to collect sufficient bugs for our study, we directly 
collect non-determinisitic bugs from all Node.js projects in 
GitHub. First, we use concurrency-related keywords 
“concurrent”, “race”, “synchronization”, “atomic”, “mutex”, 
“transaction”, “deadlock”, “compete” and “starve”, which is a 
union set of existing work [11][21][22], to search candidate non-
determinisitic bugs. We aim to filter out the issues that are about 
code written in JavaScript, marked as bugs, already in closed 
state, and have fixing solutions. We obtain 1,583 bugs after this 
step. Then we manually check these bug reports and finally 
collect 57 real world non-determinisitic bugs in 53 open-source 
Node.js projects. The involved projects are popular (avg. 2,426 
stars), well-maintained (avg. 1,516 revisions and 1,152 issues), 
complicated (avg. 10,390 lines of code) and from various 
categories (including 12 server-side applications, 6 desktop 
applications, and 35 libraries). 

Result. We thoroughly study these 57 non-determinisitic 
bugs, and answer the above four research questions. Our main 
findings are as follows: 

 Non-determinisitic bugs in Node.js can be caused by 
atomicity violation (65%), order violation (30%), and 
starvation (5%). Existing work mostly focuses on order 
violation in event-driven applications [12][13][14]. This 
suggests that more research should be conducted on 
atomicity violation in Node.js. 

 Most non-determinisitic bugs contend against shared 
variables (54%), databases (26%) and files (14%). This 
suggests that, besides shared variable [12][13], non-
determinisitic bug detection approaches should pay more 
attention to shared resources like databases and files. 

 APIs in Node.js are written in an asynchronous and 
event-driven way. They usually have unclear API 
protocols (e.g., event order and atomicity specifications). 
The specifications are violated in 28 (49%) of studied 
non-determinisitic bugs, indicating that developers may 
misunderstand the specifications of asynchronous APIs. 

 Most non-determinisitic bugs were fixed by a small set 
of fix strategies. But, only a small portion (23%) of bugs 
were fixed by simply adding synchronization (e.g., 
nested callbacks), which is the main approach used by 
existing automated bug fixing approaches. This indicates 
that further automated bug fixing approaches are needed. 

B. JSTrace: Fast Reproducing Web Application Bugs 

Record-replay techniques, e.g., Mugshot [3], can be used to 
record non-determinism in client-side JavaScript applications, 
and reproduce a failure. However, the recorded event trace can 
be very long after a long run, and lots of events in the recorded 
event trace may be irrelevant to the failure. Debugging with such 
a long trace is exhausting and time-consuming. A recent study 
shows that a shortened event trace can significantly increase 
programmers’ efficiency in failure diagnosis and fault 
localization. We propose a dynamic slicing based approach, 
JSTrace, to remove events irrelevant to the occurrence of the 
failure. 

We have two key insights to remove failure-irrelevant events. 
(1) If a recorded event never triggers any listener registered by 



users, we can safely remove it. (2) If an event e does not affect 
the variables that will be used by the erroneous event’s handler 
directly or indirectly, then e can be removed. To determine 
whether a variable may affect the variables in the erroneous 
event’s handler, we provide novel models to abstract the 
JavaScript and DOM manipulation instructions to precisely 
capture data dependencies. We also build the dependency 
between JavaScript instructions and DOM instructions. Based 
on the captured data dependencies, we build dependency 
relationships between events and based on this, our slicing 
algorithm searches for the failure related events which are 
depended by the failure directly or indirectly.  

Result. We have implemented the tool JSTrace, which is an 
enhanced record-replay tool that can significantly remove 
irrelevant events while keeping the trace reproducible. We have 
evaluated JSTrace on 10 real-world bugs from 7 popular web 
applications that belong to different domains. The result shows 
that all 10 bugs are successfully replayed, and can remove most 
of the failure-irrelevant events (96%). 

C. EvMin: Context-Based Event Trace Reduction 

JSTrace adopts dynamic slicing to trace the precise program 
dependence and discards the events that are not depended by a 
failure. However, not all remaining events in JSTrace are 
necessary to reproduce the failure. E.g., suppose an original 
event trace: e1: a=1; e2: a=a+1; e3: if(a>0) throw new Error(). 
The event e2 is failure-irrelevant since {e1, e3} can faithfully 
reproduce the failure. 

Delta debugging [20] can be used to minimize failure-
inducing events. However, delta debugging is slow because it 
may generate lots of infeasible candidate subtraces that may 
trigger syntactical errors (e.g., ReferenceError). We observe that, 
if an event in the reduced subtrace can be replayed, its context 
(i.e., variable usage information, such as the existence of its 
accessed DOM, the type of accessed variables) should keep the 
same as its corresponding event in the original trace. Based on 
this observation, we propose EvMin, an effective and efficient 
approach to remove failure-irrelevant events from an event trace. 

EvMin iteratively generates a candidate subtrace of the 
original event trace and reruns the subtrace until it finds a 
failure-reproducible trace (i.e., a trace that can reproduce the 
original failure). In order to effectively and efficiently find a 
failure-reproducible trace, we utilize the context (i.e., 
preconditions) of each event to guide the generation of subtraces. 
If an event e is selected in a candidate subtrace, we require that 
the context of an event in a candidate subtrace should keep 
compatible with the context of its corresponding event in the 
original trace. In this way, we can generate shorter traces and 
avoid generating syntactically-infeasible candidate event traces. 
Specifically, for an event ei in the original trace, if it is selected 
(marking it as ei’) in the candidate event trace, we say ei and ei’ 
have compatible contexts if the following two conditions are 
satisfied: (1) All the variables used by ei and ei’ are declared in 
the same scope with respect to their corresponding traces. (2) All 
the variables used by ei and ei’ have the same type with respect 
to their corresponding traces. Consider that the trace of needed 
events for a failure is usually short [23] (i.e., usually no more 
than 6), EvMin generates candidate traces from short to long so 
that it can find the failure-reproducible trace earlier. 

Result. We implemented EvMin for client-side JavaScript 
applications. We evaluated EvMin on 10 real-world bugs from 
7 popular web applications that belong to different domains in 
terms of effectiveness and performance. We also compared 
EvMin with delta-debugging [20] in terms of time and generated 
event traces. The result shows that EvMin can remove all 
irrelevant events for the evaluated subjects. The performance of 
EvMin is acceptable. EvMin generates 72% less event traces, 
and costs 84% less time overhead than delta debugging. 

IV. PLANNED WORK 

A. Event Trace Reduction in Node.js Applications 

Non-deterministic bugs in server-side applications usually 
result in severe impacts according to our previous study (Section 
III.A). Besides, server-side applications usually run for a very 
long time and lead to a long event trace, and the events that are 
caused by different requests may be heavily interleaved. Thus, 
identifying the relevant events that are responsible for a failure 
and reproducing it to developers is very important for server-
side applications. We plan to develop dynamic slicing and delta 
debugging approaches, and apply them on server-side 
JavaScript applications. We plan to carefully redesign the 
record-replay tool for Node.js and tackle the complicated event 
model of Node.js. We also need to design new approaches to 
make it scale to a long trace. 

Envisioned Result. We plan to evaluate our solution on 
popular real-world open-source Node.js applications. The 
approach is expected to be effective and yet efficient in reducing 
event traces in Node.js applications, especially long traces. 

B. Atomicity Violation Bug Detection in Node.js 

According to our previous study, about two thirds of bugs 
are atomicity violation (i.e., AV), which indicates an urgent need 
for tools to detect atomicity violation bugs. The main challenges 
to detect atomicity violation bugs in Node.js are as follows: (1) 
The atomicity intention (i.e., some events should be processed 
uninterruptedly) is unknown. (2) In Node.js, condition variables 
are widely used to check whether some unexpected events have 
been processed, or store program states that can be used to 
recover from unexpected event processing. However, these 
condition variables can introduce many false positives for bug 
detection. 

We are now developing AVDetector to detect atomicity 
violation bugs. The reason why atomicity bugs are common is 
that developers often use cooperative multitasking and partition 
their operations into multiple asynchronous steps to avoid 
blocking the event loop, leading to callback chains. Our solution 
is inspired by the observation that most atomicity violation bugs 
happen due to a false assumption of atomicity across callback 
chains. The interleaving between callback chains are very likely 
to introduce atomicity violation bugs. Thus, we plan to propose 
a pattern-based approach to identify atomicity violation bugs. 
For example, for a read and write operated on the same variable 
v in the callbacks caused by a user request, the variable v cannot 
be operated by the callback that caused by another user request. 
If two asynchronous operations operate on the same resource, 
e.g., a file, no other operations should operate on the same file. 
These patterns certainly do not cover all kinds of AV bugs. We 
plan to propose more patterns to cover more AV bugs. 



Envisioned Result. We plan to evaluate AVDetector on 
popular real-world open-source Node.js applications, and bugs 
studied in our empirical study. It is expected that AVDetector 
can effectively detect new non-deterministic bugs. 

V. CONCLUSION 

Non-deterministic bugs are common in JavaScript 
applications. In this proposal, we firstly give a conprehensive 
study about non-deterministic bugs in server-side JavaScript 
applications. Further, to tame non-deterministic bugs, we 
propose a dynamic slicing based approach and a context-based 
approach to reduce/minimize a given event trace for client-side 
applications, so that developers can use a short event trace for 
failure diagnosis. We also plan to propose techniques to detect 
atomicity violation bugs in server-side JavaScript applications. 

ACKNOWLEDGMENTS 

This work was supported by National Key Research and 
Development Plan (2016YFB1000803), National Natural 
Science Foundation of China (61672506, 61702490), and 
Beijing Natural Science Foundation (4164104). 

REFERENCES 

[1] “Developer Survey Results 2016.” [Online]. Available: 

http://stackoverflow.com/research/developer-survey-2016. 

[2] “New Node.js Foundation Survey Reports New ‘Full Stack’ In Demand 

Among Enterprise Developers.” [Online]. Available: 

https://nodejs.org/uk/blog/announcements/nodejs-foundation-survey/. 

[3] J. Mickens, J. Elson, and J. Howell, “Mugshot : Deterministic Capture and 

Replay for JavaScript Applications,” in Proceedings of the USENIX 

Conference on Networked Systems Design and Implementation(NSDI), 

2010, pp. 159–174. 

[4] J. Davis, A. Thekumparampil, and D. Lee, “Node.fz: Fuzzing the Server-

Side Event-Driven Architecture,” in Proceedings of the European 

Conference on Computer Systems(EuroSys), 2017, pp. 145–160. 

[5] J. Wang, W. Dou, G. Yu, G. Chushu, Q. Feng, and W. Jun, “A 

Comprehensive Study on Real World Concurrency Bugs in Node.js,” in 

Proceedings of the IEEE/ACM International Conference on Automated 

Software Engineering (ASE), 2017. 

[6] J. Wang, W. Dou, C. Gao, and J. Wei, “Fast Reproducing Web Application 

Errors,” in Preceedings of International Symposium on Software 

Reliability Engineering(ISSRE), 2015, pp. 530–540. 

[7] J. Wang, “Constraint-Based Event Trace Reduction,” in Preceedings of 

ACM SIGSOFT International Symposium on the Foundations of Software 

Engineering(FSE16-SRC), 2016, pp. 1106–1108. 

[8] F. S. Ocariza, K. Pattabiraman, and B. Zorn, “JavaScript Errors in the Wild: 

An Empirical Study,” in Proceedings of International Symposium on 

Software Reliability Engineering(ISSRE), 2011, pp. 100–109. 

[9] F. S. Ocariza, K. Bajaj, K. Pattabiraman, and A. Mesbah, “A Study of 

Causes and Consequences of Client-Side JavaScript Bugs,” IEEE 

Transactions on Software Engineering (TSE), vol. 43, no. 2, pp. 128–144, 

2016. 

[10] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from Mistakes - A 

Comprehensive Study on Real World Concurrency Bug Characteristics,” 

in Proceedings of the International Conference on Architectural Support 

for Programming Languages and Operating Systems(ASPLOS), 2008, pp. 

329–339. 

[11] T. Leesatapornwongsa, J. F. Lukman, S. Lu, and H. S. Gunawi, “TaxDC:A 

Taxonomy of Non-Deterministic Concurrency Bugs in Datacenter 

Distributed Systems,” in Proceedings of the International Conference on 

Architectural Support for Programming Languages and Operating 

Systems(ASPLOS), 2016, pp. 517–530. 

[12] P. Bielik, V. Raychev, and M. Vechev, “Scalable Race Detection for 

Android Applications,” in Proceedings of the ACM SIGPLAN 

International Conference on Object-Oriented Programming, Systems, 

Languages, and Applications(OOPSLA), 2015, pp. 332–348. 

[13] C.-H. Hsiao, J. Yu, S. Narayanasamy, Z. Kong, C. L. Pereira, G. A. Pokam, 

P. M. Chen, and J. Flinn, “Race Detection for Event-driven Mobile 

Applications,” ACM SIGPLAN Notices, vol. 49, no. 6, pp. 326–336, 2014. 

[14] B. Petrov, M. Vechev, M. Sridharan, and J. Dolby, “Race Detection for 

Web Applications,” in Proceedings of the ACM SIGPLAN Conference on 

Programming Language Design and Implementation (PLDI), 2012, pp. 

251–262. 

[15] W. Wang, Y. Zheng, P. Liu, L. Xu, X. Zhang, and P. Eugster, “ARROW : 

Automated Repair of Races on Client-Side Web Pages,” in Proceedings of 

the International Symposium on Software Testing and Analysis(ISSTA), 

2016, pp. 201–212. 

[16] Y. Zheng and X. Zhang, “Static Detection of Resource Contention 

Problems in Server-Side Scripts,” in Proceedings of the International 

Conference on Software Engineering (ICSE), 2012, pp. 584–594. 

[17] X. Zhang, S. Tallam, and R. Gupta, “Dynamic Slicing Long Running 

Programs Through Execution Fast Forwarding,” in Proceedings of ACM 

SIGSOFT International Symposium on Foundations of Software 

Engineering (FSE), 2006, pp. 81–91. 

[18] A. Zeller and R. Hildebrandt, “Simplifying and Isolating Failure-inducing 

Input,” IEEE Transactions on Software Engineering (TSE), vol. 28, no. 2, 

pp. 183–200, 2002. 

[19] G. Misherghi and Z. Su, “HDD: Hierarchical Delta Debugging,” in 

Proceedings of the International Conference on Software 

Engineering(ICSE), 2006, pp. 142–151. 

[20] M. Hammoudi, B. Burg, G. Bae, and G. Rothermel, “On the Use of Delta 

Debugging to Reduce Recordings and Facilitate Debugging of Web 

Applications,” in Proceedings of Joint Meeting of the European Software 

Engineering Conference and the ACM SIGSOFT Symposium on the 

Foundations of Software (ESEC/FSE), 2015, pp. 333–344. 

[21] G. Pinto, W. Torres, and F. Castor, “A Study on the Most Popular 

Questions about Concurrent Programming,” in Proceedings of the 

Workshop on Evaluation and Usability of Programming Languages and 

Tools, 2015, pp. 39–46. 

[22] M. Yu, Y.-S. Ma, and D.-H. Bae, “Characterizing Non-deadlock 

Concurrency Bug Fixes in Open-source Java Programs,” in Proceedings of 

the Annual ACM Symposium on Applied Computing(SAC), 2016, pp. 

1534–1537. 

[23] G. Li, E. Andreasen, and I. Ghosh, “SymJS: Automatic Symbolic Testing 

of JavaScript Web Applications,” in Proceedings of the ACM SIGSOFT 

International Symposium on Foundations of Software Engineering(FSE), 

2014, pp. 449–459. 

 
 


