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ABSTRACT 
Various record-replay techniques are developed to facilitate web 

application debugging. However, it is time-consuming to inspect 

all recorded events that reveal a failure. To reduce the cost of de-

bugging, delta-debugging and program slicing are used to remove 

failure-irrelevant events. However, delta-debugging does not scale 

well for long traces, and program slicing fails to remove irrelevant 

events that the failure has program dependence on. In this paper, 

we propose an effective and efficient approach to remove failure-

irrelevant events from the event trace. Our approach builds con-

straints among events and the failure (e.g., a variable can read any 

of its earlier type-compatible values), to search for a minimal event 

trace that satisfies these constraints. Our evaluation on 10 real-

world web applications shows that our approach can further remove 

70% of events in the reduced trace of dynamic slicing, and needs 

80% less iterations and 86% less time than delta-debugging. 
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1. INTRODUCTION AND MOTIVATION 
To help diagnose JavaScript-based web application failures, vari-

ous record-replay techniques [1][2] are developed. However, web 

applications are becoming more complicated and may generate a 

long event trace after running for a while. It is time-consuming to 

debug with such a long trace. According to a recent study [3], a 

short event trace for a failure can significantly increase program-

mers’ debug efficiency. Thus, event trace reduction techniques are 

proposed to reduce failure-irrelevant events, e.g., delta debugging 

[3][4] and dynamic slicing [5]. 

The delta debugging technique, e.g., the [3], removes some events 

that do not influence the occurrence of a failure in each iteration, 

until no further events can be deleted. However, delta debugging is 

black-box and does not scale to huge event traces due to (1) the 

large search space and (2) re-executing every blindly generated 

event trace. In our experiments, it costs 27 minutes for an event 

trace with only 617 events. 

Our previous work JSTrace [5] adopts dynamic slicing to trace the 

precise program dependence and discards the events that are not 

depended by a failure. However, not all remaining events in 

JSTrace are necessary to reproduce the failure. Let’s see the exam-

ple in Figure 1. This code snippet shows the event handler when an 

item is added to a shopping list. Considering the following event 

trace: (1) e1: add an item named “book1”; (2) e2: add an item named 

“book2”; (3) e3: add an item named “book1”. A failure will occur 

if two added items have the same name (e.g., “book1”). Only e1 and 

e3 are enough to trigger this failure. However, based on dynamic 

slicing, e3 depends on e2 (e3 uses variable shoppingList written by 

e2 at line 3) and e2 depends on e1 (e2 uses variable shoppingList 

written by e1 at line 3). As a result, we cannot remove e2 although 

it is unnecessary to reproduce this failure. 

In this paper, we propose a novel constraint-based approach to ef-

fectively and efficiently remove failure-irrelevant events in the 

event trace that leads to a failure. First, we relax the program de-

pendence (e.g., force the variable shoppingList in e3 to directly read 

from its value in e1), thus irrelevant events (e.g., e2) can be removed 

(effectiveness). Second, we use constraints (e.g., variables should 

be defined before used) to filter out event traces that cannot repro-

duce the failure (efficiency). 

2. BACKGROUND AND RELATED WORK 
We focus on those work that concern record-replay in web applica-

tions and techniques for trace/test reduction. 

Record-replay in web applications. Web application record-re-

play tools have been developed for faithfully reproducing failures, 

e.g., Mugshot [1] and Timelapse [2]. However, they do not figure 

out which events are relevant to failures. 

Delta-debugging. Delta debugging is widely used to facilitate pro-

gram debugging [4][6][7][8][9][10]. Hammoudi et al. [3] adapts 

delta-debugging [4] to reduce web application event traces. Their 

approach operates by repeatedly selecting subsets of the events in 

a trace, and replaying these subsets to determine whether they can 

reveal the failure. Their work relies on blindly generating event 

subsets. While our approach utilizes the runtime information to re-

strain the target event trace generation, and by this way greatly nar-

rows down the search space. 

Program Analysis. JSTrace [5] adopted dynamic slicing [11][12] 

to simplify event traces. However, a computation may still be re-

dundant even if it is depended by a failure. SimpleTest [13] recon-

structs a test to a simpler one by repeatedly replacing referred ex-

pressions in each statement with other alternatives. While the work 

[14] applies partial-order and def-use relationship between events 

to identify redundant event traces. 

 

1. function onAddItem(){ 

2.     var item = new Item(getElement(‘item_name’).value); 

3.     shoppingList = shoppingList || []; 

4.     shoppingList.push(item); // Throw an except when item exists. 

5. } 

Figure 1. Event handler for adding items to shopping list. 
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3. APPROACH AND UNIQUENESS 
Overview. Our approach consists of three phases. (1) We instru-

ment the source code to collect runtime information. (2) We con-

struct constraints according to the collected information, and gen-

erate candidate event traces that are likely to reproduce the failure. 

(3) Each candidate trace is checked if it can reproduce the failure. 

Phases 2 and 3 are repeated until a valid trace is generated.  

We have two observations to generate candidate event traces. (1) 

The selected events should at least be feasible (i.e., a variable must 

be defined before used). (2) The exact value of a variable v may not 

be critical to the failure. Thus, variable v could be relaxed to any of 

its earlier type-compatible values. For example in Figure 1, we re-

quire that shoppingList in e3 directly reads the value written by e1. 

Thus, we can possibly remove e2. 

Uniqueness. The advantage of our approach is that (1) more fail-

ure-irrelevant events can be removed by relaxing program depend-

ence, rather than the exact dependence used in dynamic slicing; (2) 

the search space is narrowed down since our constraints restrict it 

by using runtime information. 

3.1 Information Collecting 
We collect the following runtime information, so that we can use 

them to guide trace generating and validating. 

Types and def-use: We collect type and def-use information so that 

we can build constraints (Section 3.2) to generate candidate traces. 

For each variable v: 1) The type of v is recorded. It can be “unde-

fined”, “number”, “string”, “boolean”, and “object”. Since DOM is 

special object, we mark it as “DOM” type instead of “object”. 2) 

The events that operate on v and define v are also recorded. 

Symbolic expressions: We symbolize each variable v and trace 

their symbolic expressions so that we can use them to check if a 

specific program state is satisfied (Section 3.3). Symbolic expres-

sions are collected similar to any dynamic symbolic execution 

[15][16][17]. Since we only calculate their values rather than solv-

ing the path constraints to explore new execution paths, our vali-

dating does not suffer from poor performance problem. 

3.2 Event Trace Generating 
Given an event trace 𝜏 = {𝑒1,  𝑒2 , … , 𝑒𝑛} that can reproduce a fail-

ure, our approach generates a subset 𝜏 , of 𝜏, which can still repro-

duce the failure. We require 𝜏 , should be as short as possible. Let 

select(ei) denote whether event ei is selected by 𝜏 ,. If ei is selected 

by 𝜏 ,, ei = 1. Formally, select(ei) is: 

select(ei) ≡ (ei==1). 

The trace generating formula Φ is constructed by a conjunction of 

four sub-formulas: Φ ≡ Φs ⋀ Φc ⋀ Φl ⋀ Φe, where Φs denotes the 

minimal syntax constraint, Φc denotes the type-compatible con-

straint, Φl denotes the length constraint, and Φe denotes that the 

failure-triggering event must be selected. 

3.2.1 Minimal Syntax Constraint (Φs) 

The minimal syntax constraint (Φs) ensures that a variable is used 

after necessary definition. Specifically, Φs requires that: (1) A local 

variable should be explicitly defined. A global variable could be 

used without definition, but a local variable must be explicitly de-

fined using keyword var. Thus, if event e is selected, then all events 

that define the variables used by e should be selected. (2) An event 

handler should be called after its registration. Otherwise, an event 

fails to trigger the event handler. Thus, if event e is selected, then 

the events that register the event handler of e should be selected. 

We can regard an event handler as a variable v, and the registration 

of v as its definition. Let use(e) be the set of variables used by e, 

def(v) be the events that define the variable v. Formally, Φs is: 

Φs ≡ ⋀e∈τ(select(e) ⇒ ⋀v∈use(e) select(def(v))). 

3.2.2 Type-Compatible Constraint (Φc) 

Type-compatible constraint (Φc) is used to ensure that each variable 

reads the same type as recorded, although their exact value may be 

different. By relaxing the dependence of a variable, we can generate 

more simplified trace. Φc requires that if an event e is selected, then 

for all variables used by e, at least one of its type-compatible written 

events is selected. Let CEvent(v) be the set of events that contains 

type-compatible written to v. Formally, Φc is: 

Φc ≡ ⋀ e∈τ select(e) ⇒ ⋀v∈use(e) ( ⋁ej∈CEvent(v) select(ej)). 

We can directly compare the type information collected to decide 

if a previous written value is type-compatible. However, if v is 

marked as “DOM” type, we need to subtly model its CEvent(v) be-

cause it has complicated tree-like structure. For DOM type, we say 

v1 is type-compatible with v2 when the DOM tree of v1 has the same 

structure as that of v2. 

3.2.3 Length Constraint (Φl) 

Length constraint (Φl) restricts the length of candidate traces. Let 

length be the maximal length of candidate traces. Formally, Φl is: 

Φl ≡ (∑
e∈τ

ei) == length. 

The initial value of length is 1 and we increate it by 1 if there are 

no solutions for length. This process is repeated until a valid trace 

is found. This strategy make short traces be generated first. Thus, 

we could quickly find the valid trace since the failure related event 

trace is usually relatively short [3][18][19]. 

3.3 Event Trace Validating 
We validate each generated candidate trace if it can reproduce the 

failure. Instead of replaying the candidate trace as delta debugging, 

we utilize the symbolic expressions to make the validation. 

We observe that a valid event trace may follow the same path con-

ditions and hit the same failure as the original event trace does. For 

each trace, the following constraints should be satisfied: (1) Path 

constraint (Φp). All the path conditions (i.e., the branches of the 

execution) hold the same value as recorded. (2) Failure constraint 

(Φf). Failure assertions tell if the failure occurs. We calculate the 

value of each symbolic expression for a given candidate trace and 

check if Φp⋀Φf is satisfied.  

4. RESULTS AND CONTRIBUTIONS 
We performed our evaluation on 10 real-world web application fail-

ures used in JSTrace [5]. The evaluation shows that our approach 

can further remove 70% of events in the reduced trace of dynamic 

slicing, and needs 80% less iterations and 86% less time than delta-

debugging. Note that the time overhead of our approach includes 

information collecting (65.3%), trace generating (5.6%) and trace 

validating (29.1%). The contributions of this paper are as follows: 

• We propose a novel approach that transforms event trace reduc-

tion problem into a constraint solving problem. 

• The evaluation on 10 real-world failures shows our approach 

can effectively and efficiently remove failure-irrelevant events. 
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